

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37

European Technical Assessment

ETA-16/0944 of 12/12/2016

English translation prepared by CSTB - Original version in French language

General Part

Nom commercial Trade name

Famille de produit Product family **Chemical Capsule Anchor V plus**

Cheville à scellement de type "capsule" pour fixation dans le béton non fissuré M8, M10, M12, M14, M16, M20, M22, M24 et M30.

Bonded capsule anchor for use in non cracked concrete: sizes M8, M10, M12, M14, M16, M20, M22, M24 and M30

Titulaire *Manufacturer*

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

Germany

Usine de fabrication Manufacturing plant

MKT plant 1 MKT plant 3

Cette évaluation contient: *This assessment contains*

11 pages incluant 8 annexes qui font partie intégrante de cette

évaluation

11 pages including 8 annexes which form an integral part of this assessment

Base de l'ETE Basis of ETA ETAG 001, Version Avril 2013, utilisée en tant que EAD

ETAG 001, Edition April 2013 used as EAD

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

1 Technical description of the product

The MKT V plus adhesive system is a bonded anchor system (capsule type) consisting of glass capsule V-P plus with a threaded rod with hexagon nut and washer of sizes M8, M10, M12, M14, M16, M20, M22, M24 and M30.

The standard threaded rod can be made of zinc plated carbon steel, stainless steel or high corrosion resistant stainless steel.

The glass capsule is placed into a rotary/percussion previously drilled hole and the threaded rod is driven by machine with simultaneous hammering and turning.

The anchor rod is anchored via the bond between anchor rod, chemical mortar and concrete.

The illustration and the description of the product are given in Annex A1.

2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic tension resistance and shear resistance for threaded rods	See Annex C1, C2
acc. TR029	
Characteristic tension resistance and shear resistance for threaded rods acc. CEN/TS 1992-4-5	See Annex C3, C4
Displacements	See Annex C1, C2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For Basic Requirement Safety in Use the same criteria are valid as for Basic Requirement Mechanical Resistance and Stability.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

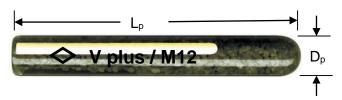
4 Assessment and Verification of Constancy of Performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	_	1

5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.


The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

Issued in Marne La Vallée on 12-12-2016 by Charles Baloche Directeur technique

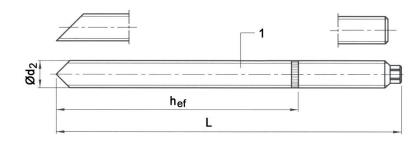
The original French version is signed

Chemical capsule anchor V plus

Mortar Capsule V-P plus

Marking: e.g. \diamondsuit V plus / M12

 \Diamond


Identifying mark of manufacturing plant

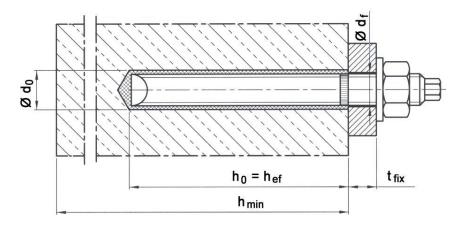
V plus M 12

Capsule type

Capsule size

Threaded rod

Marking: e.g. M12-8


Identifying mark of manufacturing plant

M12 Size of thread

-8 additional marking of steel grade 8.8 A4 additional marking of stainless steel A4 HCR additional marking of high corrosion

resistant steel HCR

Installation

Chemical Capsule Anchor V plus

Annex A1

System Description and Installation

Chemical capsule anchor V plus

Table A1: Materials

Part	Designation	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042	Steel, hot-dip galvanised ≥ 40 µm acc. to EN ISO 10684	Stainless steel A4	High corrosion resistant steel (HCR)		
1	Threaded rod	Steel, Property class 5.8, 8.8, acc. to EN ISO 898-1	Steel, Property class 5.8, 8.8, acc. to EN ISO 898-1	Stainless steel, 1.4401, 1.4404, 1.4571, EN 10088, Property class A4-70 or A4-80, acc. to EN ISO 3506-1	High corrosion resistant steel, 1.4529, 1.4565, EN 10088, Property class 70, acc. to EN ISO 3506-1		
2	Washer	Steel, galvanised	Steel, hot-dip galvanised	Stainless steel, 1.4401, 1.4404, 1.4571, EN 10088	High corrosion resistant steel, 1.4529, 1.4565, EN 10088		
3	Hexagon nut	Property class 8 acc. to EN ISO 898-2, galvanised	Property class 8 acc. to EN ISO 898-2, hot-dip galvanised	Stainless steel, 1.4401, 1.4404, 1.4571, EN 10088, Property class A4-70 or A4-80, acc. to EN ISO 3506-2	High corrosion resistant steel, 1.4529, 1.4565, EN 10088, Property class 70, acc. to EN ISO 3506-2		
4	Glass capsule	Glass, Quartz, Resin, Hard	ener				

Table A2: Dimensions in mm

Part	Descriptio	n	M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
	Thusadad	d ₂	M8	M10	M	12	M14	М	16	M	20	M22	M	24	M30
1	Threaded rod	$\begin{array}{cc} L & \geq \\ h_{ef} \end{array}$	95 80	100 90	120 110	175 165	135 120	140 125	205 190	190 170	275 255	210 190	235 210	340 315	320 280
3	Hexagon nut	SW	13	17	1	9	22	2	4	3	0	32	3	6	46
4	Glass	Dp	9	11	1	3	15	1	7	1	7	22	2	2	25
4	capsule	L_p	80	80	95	125	95	95	125	160	250	160	175	245	230

Chemical Capsule Anchor V plus	Annex A2
Materials and Dimensions	

Specifications of intended use

Table B1: Overview use categories and performance categories

	<u>~</u>	<u>•</u>				
Use condition	ns	N	Nortar capsule V plus with			
			Threaded rods			
hammer drillin compressed a	g or \sim ir drilling mode.	✓				
Static and qua	asi static loading,	M8 to M30				
in non-cracked		Tables C1, C2, C3, C4, C5, C6				
	dry or wet concrete are excluded)	✓				
Installation ten	nperature (minimum)		mortar +5°C, concrete -5°C			
	Tomporatura rango I:	-40°C to +40°C	(max long term temperature +24°C			
In-service temperature	Temperature range I:	-40 C 10 +40 C	and max short term temperature +40°C)			
	Temperature range II:	-40°C to +80°C	(max long term temperature +50°C and max short term temperature +80°C)			

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000-12.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000-12.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000-12.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- · Structures subject to permanently damp internal condition :
 - if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
 - with particular aggressive conditions (high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment:
 - if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
 - with particular aggressive conditions (high corrosion resistant steel).

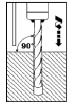
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

· Overhead installations are permitted

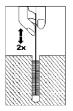
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with (please choose the relevant design method): EOTA Technical Report TR 029, Edition September 2010; CEN/TS 1992-4-5

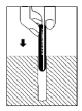
Chemical Capsule Anchor V plus	Annex B1
Intended use - Specifications	

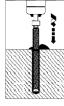

Table B2: Installation parameters

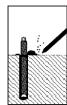
Anchor size			M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Nominal drill hole Ø	d ₀	[mm]	10	12	1	4	16	1	8	2	2	24	2	6	32
Cutting diameter	d _{cut} ≤	[mm]	10.5	12.5	14.5		16.5	18.5		22.5		24.5	26	6.5	32.5
Depth of drill hole	h ₀	[mm]	80	90	110	165	120	125	190	170	255	190	210	315	280
Ø of clearance hole in the fixture	df	[mm]	9	12	1	4	16	1	8	2	2	24	2	6	33
Steel brush Ø	D	[mm]	11	13	16		18	2	.0	2	4	26	2	8	34
Torque moment	Tinst	[Nm]	10	20	4	0	60	8	0	12	20	135	18	30	300


¹⁾ for larger clearance hole in the fixture see TR 029 section 1.1 and/or CEN/TS 1992-4-1:2009, section 1.2.3

Steel brush and installation procedure







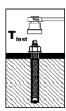


Table B3: Minimum member thickness, edge distance and spacing

Anchor size			M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Min. member thickness	h _{min}	[mm]	110	120	140	195	150	160	225	220	300	240	260	370	340
Min. edge distance	Cmin	[mm]	40	45	55	55	60	65	65	85	85	95	105	105	140
Min. spacing	S _{min}	[mm]	40	45	55	55	60	65	65	85	85	95	105	105	140

Table B4: Minimum curing time

Temperatur in the concrete m		Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ - 5	°C	5 h	10 h
≥ + 5	°C	1 h	2 h
≥ + 20	°C	20 min.	40 min.
≥ + 30	°C	10 min.	20 min.

Chemical	Capsule	Anchor	٧	plus
----------	---------	---------------	---	------

Annex B2

Installation data

Anchor size

M8 M10 M12 M12 M14 M16 M16 M20 M20 M22 M24 M24 M30

Table C1: Characteristic values of resistance to tension loads. **Design method TR 029**

						/1,5t			/1,5t		/1,5t			/1,5t			
Steel failure																	
Characteristic resistance property class 5.8	$N_{Rk,S}$	[kN]	18	29	4	2	58	7	'8	12	23	152	1	77	281		
Characteristic resistance property class 70	$N_{Rk,S}$	[kN]	26	40	5	9	81	1	10	17	172		172 212		2	47	393
Characteristic resistance property class 8.8 property class 80	$N_{ ext{Rk,S}}$	[kN]	29	46	6	7	92	12	26	19	96	242	28	82	449		
Partial safety factor property class 5.8, 8.8 property class 70 property class 80	γ_{Ms} 1)	[-]		1.5 1.87 1.60													
Combined Pull-out and	l Concre	te cone	failur	е													
Characteristic bond resistar	nce in non-	-cracked	concre	te C20/	25												
Temperature range I: 40°C/24°C ²⁾	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]		12 11										10			
Temperature range II: 80°C/50°C ²⁾	$ au_{Rk,ucr}$	[N/mm²]		10 9.5										9.0			
Partial safety factor γ_{Mp}	$=\gamma_{\rm Mc}^{-1)}$	[-]						1.	5 ³⁾						1.8 4)		
Effective anchorage depth	h_{ef}	[mm]	80	90	110	165	120	125	190	170	255	190	210	315	280		
		C25/30							1.06								
		C30/37							1.14								
Increasing factors for non-		C35/45							1.22								
cracked concrete	Ψ	C40/50							1.26								
		C45/55							1.30								
		C50/60							1.34								
Splitting failure																	
Char. edge distance	C _{cr,sp}	[mm]	160	135	140	205	150	160	240	215	320	240	265	395	350		
Char. spacing	S _{cr,sp}	[mm]							2-c _{cr,sp}						•		
Partial safety factor	γ_{Msp} 1)	[-]						1.5	5 ³⁾						1.8 4)		
In absence of other nation	al regulatio	ne	1		2) Max	/imum 4	short or	nd long	term te	mnerat	uroc:				•		

Table C2: Displacements under tension loads

Anchor size			M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Tension load	N	[kN]	9.6	13.5	19.7	29.6	25.1	29.9	45.5	48.3	72.5	59.4	71.6	107.4	94.2
Displacement	δ_{N0}	[mm]	0.17	0.18	0.18	0.18	0.18	0.19	0.19	0.19	0.19	0.20	0.20	0.20	0.21
Displacement	$\delta_{N\infty}$	[mm]							0.50						

Chemical Capsule Anchor V plus

Annex C1

Design according to TR029

Characteristic values of resistance to tension loads - Displacements

 $^{^{1)}}$ In absence of other national regulations / $^{2)}$ Maximum short and long term temperatures; $^{3)}$ The partial safety factor γ_2 = 1,0 is included / $^{4)}$ The partial safety factor γ_2 = 1,2 is included

Table C3: Characteristic values of resistance to shear loads. Design method TR 029

Anchor size			M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Steel failure without lev	er arm														
Characteristic resistance property class 5.8	$V_{Rk,S}$	[kN]	9) 14 21		29	39		61		76	8	8	140	
Characteristic resistance property class 70	$V_{Rk,S}$	[kN]	13	20	20 30		40	5	5	8	6	106	12	24	196
Characteristic resistance property class 8.8 property class 80	$V_{Rk,S}$	[kN]	15	23 34		46	63		3 98		121	141		224	
Partial safety factor property class 5.8, 8.8 property class 70 property class 80	γ _{Ms} ¹⁾	[-]		1.25 1.56 1.33											
Steel failure with lever	arm														
Char. bending moment property class 5.8	$M^0_{Rk,s}$	[Nm]	19	37	6	6	105	16	66	32	25	448	56	61	1125
Char. bending moment property class 70	$M^0_{Rk,s}$	[Nm]	26	52	92		146	23	33	45	54	627	78	36	1574
Char. bending moment property class 8.8 property class 80	$M^0_{Rk,s}$	[Nm]	30	60	10)5	168	26	66	5′	19	716	89	98	1799
Partial safety factor property class 5.8, 8.8 property class 70 property class 80	γ _{Ms} 1)	[-]							1.25	1.56 1	.33				
Concrete pryout failure															
Factor in equation (5.7) of TR 029, Section 5.2.3.3	f k	[-]							2.0						
Partial safety factor	γ _{Mc} ¹⁾	[-]							1.5 ²⁾						
Concrete edge failure 3)	1														
Partial safety factor	γ _{Mc} 1)	[-]							1.5 ²⁾						

Table C4: Displacements under shear loads

Anchor size			M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Shear load	V	[kN]	5.2	8.3	12.0	12.0	16.4	22.4	22.4	35.0	35.0	43.3	50.4	50.4	80.1
Displacement	δ_{V0}	[mm]	2.0	2.1	2.2	2.2	2.3	2.5	2.5	2.6	2.6	2.8	2.8	2.8	3.0
	$\delta_{V^{\infty}}$	[mm]	2.9	3.1	3.3	3.3	3.5	3.7	3.7	4.0	4.0	4.1	4.1	4.1	4.4

Chamiaa	Cancula	Anchar	V plue

Annex C2

Design according to TR029

Characteristic values of resistance to shear loads - Displacements

¹⁾ In absence of other national regulations / The partial safety factor γ_2 = 1.0 is included

³⁾ Concrete edge failure see chapter 5.2.3.4 of Technical Report TR 029

Table C5: Characteristic values of resistance to tension loads. Design acc. CEN/TS 1992-4-5

Anchor size			M8	M10	M12 M1		M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Steel failure					7 - 7			71,00		71,01			71,00	
Characteristic resistance property class 5.8	$N_{\text{Rk,S}}$	[kN]	18	29	42	58	7	8	12	23	152	17	77	281
Characteristic resistance property class 70	$N_{\text{Rk,S}}$	[kN]	26	40	59	81	110		172		212	247		393
Characteristic resistance property class 8.8 property class 80	$N_{\scriptscriptstyle{Rk},S}$	[kN]	29	46	67	92	12	26	19	96	242	28	32	449
Partial safety factor property class 5.8, 8.8 property class 70 property class 80	γ_{Ms} 1)	[-]		1.5 1.87 1.60										
Combined Pull-out and C														
Characteristic bond resistance	e in non-	cracked	concre	te C20/	25									ı
Temperature range I: 40°C/24°C ²⁾	$\tau_{\scriptscriptstyle Rk,ucr}$	[N/mm²]		12 11										10
Temperature range II: 80°C/50°C ²⁾	$\tau_{\scriptscriptstyle Rk,ucr}$	[N/mm²]		10 9.5										9.0
Partial safety factor γ_{Mp}	$_{\rm o} = \gamma_{\rm Mc}^{-1)}$	[-]		1.5 ³⁾									1.8 4	
Factor acc. CEN/TS 1992-4-5 § 6.2.2.3	, k _{ucr}	[-]		10.1										ı
Effective anchorage depth	$h_{\hbox{\scriptsize ef}}$	[mm]	80	90	110 16	5 120	125	190	170	255	190	210	315	280
		C25/30						1.06						
		C30/37						1.14						
Increasing factors for non-		C35/45						1.22						
cracked concrete	Ψ۰	C40/50						1.26						
		C45/55						1.30						
		C50/60						1.34						
Concrete cone failure														
Factor acc. CEN/TS 1992-4- 5, § 6.2.3.1	kucr	[-]			-			10).1					
Edge distance	$\boldsymbol{C}_{\text{cr},N}$	[-]						1.5	h _{ef}					
Spacing	$S_{\text{cr},N}$	[-]		3 h _{ef}										
Splitting failure														
Char. edge distance	$C_{\text{cr,sp}}$	[mm]	160	135	140 20	5 150	160	240	215	320	240	265	395	350
Char. spacing	S _{cr,sp}	[mm]						2·c _{cr,sp}						
Partial safety factor	γ _{Msp} 1)	[-]					1.5	5 ³⁾						1.8 4
In absence of other national The partial safety factor $\Upsilon_2 = \frac{1}{2}$	/		2) Maximu 4) The parti		_									

³⁾ The partial safety factor $\gamma_2 = 1.0$ is included /

Chemical Capsule Anchor V plus

Annex C3

Design CEN/TS 1992-4-5:

Characteristic values of resistance to tension loads

⁴⁾ The partial safety factor γ_2 = 1,2 is included

Table C6: Characteristic values of resistance to shear loads. Design acc. CEN/TS 1992-4-5

Design a	CC. CL	_14/ 1	0 13	<u> </u>											
Anchor size			M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Steel failure without lever	r arm			•											
Characteristic resistance property class 5.8	$V_{Rk,S}$	[kN]	9 14 21				29	39		61		76	8	8	140
Characteristic resistance property class 70	$V_{Rk,S}$	[kN]	13	20	30		40	5	5	8	6	106	12	24	196
Characteristic resistance property class 8.8 property class 80	$V_{Rk,S}$	[kN]	15	23	3	4	46	63		98		121	1 141		224
Partial safety factor property class 5.8, 8.8 property class 70 property class 80	γ _{Ms} ¹⁾	[-]		1.25 1.56 1.33											
Ductility factor acc. CEN/TS 1992-4-5, § 6.3.2.1	k ₂	[-]		0.8											
Steel failure with lever ar	m														
Char. bending moment property class 5.8	$M^0_{Rk,s}$	[Nm]	19	9 37 66				166		325		448	56	61	1125
Char. bending moment property class 70	${\sf M^0}_{\sf Rk,s}$	[Nm]	26	52	9	2	146	23	33	45	54	627	78	36	1574
Char. bending moment property class 8.8 property class 80	$M^0_{Rk,s}$	[Nm]	30	60	10	05	168	266		519		716	89	98	1799
Partial safety factor property class 5.8, 8.8 property class 70 property class 80	γ _{Ms} 1)	[-]							1.25	1.56 1	.33				
Concrete pryout failure															
Factor in equation (27) of CEN/TS 1992-4-5, § 6.3.3	k ₃	[-]	2.0												
Partial safety factor	γ _{Mc} ¹⁾	[-]	1.5 ²⁾												
Concrete edge failure															
Concrete Edge failure, see	CEN/TS	1992	2-4-5,	§ 6.3.4											
Partial safety factor	γ _{Mc} ¹⁾	[-]							1.5 ²⁾						

Chemical Capsule Anchor V plus

Design CEN/TS 1992-4-5:

Characteristic values of resistance to shear loads

Annex C4

 $^{^{1)}}$ In absence of other national regulations $\,$ / $\,$ The partial safety factor γ_2 = 1.0 is included