

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0483 of 12 May 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system VME plus

Bonded fastener for use in concrete

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Werk 1,D und Werk 2,D

39 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-19/0483 issued on 30 August 2019

European Technical Assessment ETA-19/0483

Page 2 of 39 | 12 May 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-19/0483

Page 3 of 39 | 12 May 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system VME Plus for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar VME Plus and a steel element according to Annex A3 and A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1, C 3 to C 6, C 9 to 11, C 13 to C 15
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2, C 7, C 12 and C 16
Displacements under short-term and long-term loading	See Annex C 18 to C 21
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 8, C 17 to C 19

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-19/0483

Page 4 of 39 | 12 May 2021

English translation prepared by DIBt

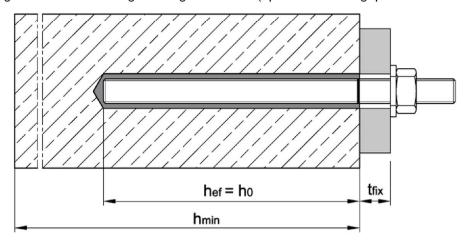
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

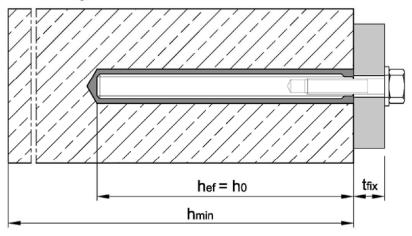
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

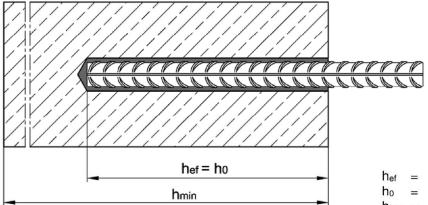
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 12 May 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider



Installation threaded rod M8 to M30


Pre-setting installation or through-setting installation (optional annular gap filled with mortar)

Installation internally threaded anchor rod VMU-IG M6 to VMU-IG M20

Installation reinforcing bar Ø8 to Ø32

effective anchorage depth

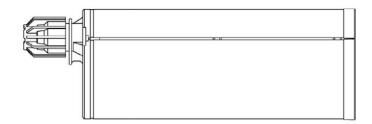
depth of drill hole

 h_{min} = minimum thickness of member

= thickness of fixture

Injection System VME plus Keine Indexeinträge gefunden.

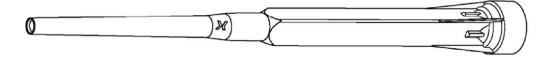
Product description


Installation situation

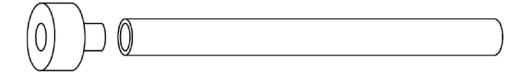
Annex A1

Cartridge Injection Mortar VME plus

Side-by-side cartridge 440 ml 585 ml 1400 ml



Imprint:


VME plus,

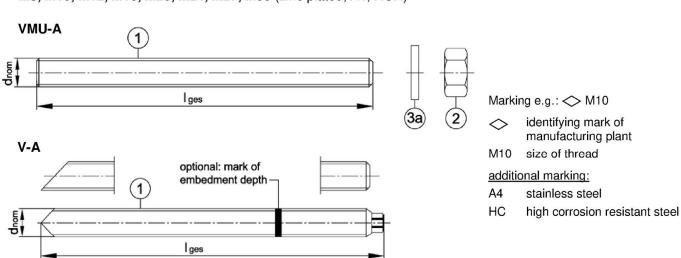
processing notes, batch number, shelf life, hazard-number, storage temperature, curing- and processing time, optional with travel scale

Static Mixer

Retaining washer and extension nozzle

Injection System VME plus

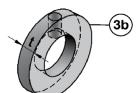
Product description


Cartridge, static mixer and retaining washer with extension nozzle

Annex A2

Threaded rod

Threaded rod VMU-A, V-A with washer and hexagon nut M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A4, HCR)

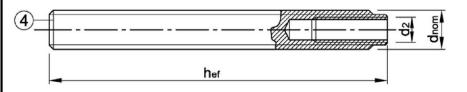

Threaded rod VM-A (material sold by the meter, to be cut at the required length) M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)

Commercial standard threaded rod

M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR) with:

- Materials, dimensions and mechanical properties see Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004

Washer with bore and reducing adapter for filling the gap between threaded rod and fixture


Thickness of washer with bore for diameter < M24: t = 5 mm

< M24. t = 5 HIH $\ge M24$: t = 6 mm

Internally threaded anchor rod

VMU-IG M6, VMU-IG M8, VMU-IG M10, VMU-IG M12, VMU-IG M16, VMU-IG M20

(zinc plated, A4, HCR)

Marking e.g.: ◆ M8

identifying mark of manufacturing plant

piant

I internal thread

M8 size of internal thread

additional marking:

A4 stainless steel

HCR high corrosion resistant steel

Injection System VME plus

Product description

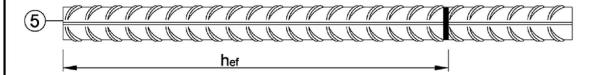
Threaded rod, internally threaded anchor rod and washer with bore

Annex A3

744792 21 8 06 01-74/21

Table A1: Materials -	Threaded rod	and internally	threaded anchor rod
-----------------------	--------------	----------------	---------------------

Part	Designation		Material						
Steel, zinc platedelectroplated≥ 5 μm acc. to EN ISO 4042:2018 orhot-dip galvanized≥ 40 μm (50 μm in average) acc. to EN ISO 1461:2009 and EN Isherardized≥ 45 μm acc. to EN ISO 17668:2016							ISO 10684:200	04+AC:2009 or	
		Property class	charac ultimate		charac yield st		fracture elongation	- EN ISO 683-4:2018,	
		4.6		400		240	A ₅ > 8 %	EN 10263:2001;	
1	Threaded rod	4.8		400		320	A ₅ > 8 %		
		5.6	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A ₅ > 8 %	commercial standard threaded rod:	
		5.8	[[[]	500	[[\\]	400	A ₅ > 8 %	EN ISO 898-1:2013	
		8.8		800		640	A ₅ ≥ 12% ¹⁾		
		4	for class	4.6 or 4.8	rods				
2	Hexagon nut	5	for class	4.6, 4.8,	5.6, 5.8 roc	ds		EN ISO 898-2:2012	
		8	for class	4.6, 4.8,	5.6, 5.8, 8.	8 rods			
3a	Washer		e.g.: EN 887:2006		:2000, EN	ISO 7093	3:2000, EN ISO	7094:2000, EN ISO	
3b	Washer with bore		steel, zin	c plated					
4	Internally threaded	5.8	stool olo	ctroplated	d or sherar	dizod	A ₅ > 8%	EN ISO 683-4:2018	
+	anchor rod	8.8	Steel, ele	ctropiated	d Of Siletai	A ₅ > 8%	EN 130 003-4:2018		
Stain	less steel A2 ²⁾ less steel A4 corrosion resistant stee	el HCR	CRC II (Materials 1.4301 / 1.4307 / 1.4311 / 1.4567 / 1.4541) CRC III (Materials 1.4401 / 1.4404 / 1.4571 / 1.4578) CRC V (Materials 1.4529 / 1.4565)						
		Property class	l l				fracture elongation		
1	Threaded rod 3)	50		500		210	A ₅ > 8%	EN 10088-1:2014	
		70	f _{uk} [N/mm²]	700	f _{yk} [N/mm²]	450	A ₅ ≥ 12% ¹⁾	EN ISO 3506-1:2020	
		80	[[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	800	[[[[[[[[[[[[[[[[[[[[600	A ₅ ≥ 12% ¹⁾		
		50	for class	50 rods					
2	Hexagon nut 3)	70	for class	50 or 70 i	rods			EN 10088-1:2014 EN ISO 3506-2:2020	
		80	for class	50, 70 or	2 214 130 3300-2.2020				
3a	Washer			ISO 7089 7094:2000	- EN 10088-1:2014				
3b	Washer with bore			steel A4; osion resi	2.1 10000-1.2017				
4	Internally threaded	50	IG-M20 A ₅ > 8 %				EN 10088-1:2014		
"	anchor rod	70	IG-M6 to IG-M16 A ₅ > 8 %					- EN 10088-1:2014	


 $^{^{1)}}$ fracture elongation A₅ > 8 % for applications <u>without</u> requirements for seismic performance category C2 $^{2)}$ property classes 50 and 70 $^{3)}$ property classes 70 and 80 up to M24

Injection System VME plus	
Product description Materials - Threaded rod and internally threaded anchor rod	Annex A4

Reinforcing bar

 \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rip height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Material reinforcing bar

Part	Designation	Material					
Reba	r						
5	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL acc. EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$					

Injection System VME plus	
Product description Product description and material reinforcing bar	Annex A5

Specification of intended use

Static and quasi-static action	working life 50 years	working life 100 years					
Threaded rod Internally threaded anchor rod Rebar	M8 - M30 VMU-IG M6 - VMU-IG M20 Ø8 - Ø32						
	cracked or unc	racked concrete					
Base material	C20/25 to C50/60 inforced normal weight concrete EN 206:2013+A1:2016						
	cracked concrete: hammer drilling / compressed air drilling / vaccum drilling						
Hole drilling	uncracked concrete: hammer drilling / compressed air drilling / vaccum drilling / diamond drilling						
Temperature range 1)	I: -40°C to +40°C II: -40°C to +72°C	I: -40°C to +40°C II: -40°C to +72°C					

Seismic action	performance category C1	performance category C2					
Threaded rod Internally threaded anchor rod Rebar	M8 - M30 Ø8 - Ø32	M12 - M24 					
	cracked or uncracked concrete						
Base material	strength classes C20/25 to C50/60 compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013+A1:2016						
Hole drilling	hammer drilling / compressed air drilling / vaccum drilling						
Temperature range 1)	I: -40°C to +40°C II: -40°C to +72°C	I: -40°C to +40°C II: -40°C to +72°C					

Temperature Range I: max. long term temperature +24°C and max. short term temperature +40°C max. long term temperature +50°C and max. short term temperature +72°C

Injection System VME plus	
Intended use Specifications	Annex B1

Specification of intended use

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions: all materials
- For all other conditions:
 Intended use of Materials according to Annex A4, Table A1 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with EN 1992-4:2018 or Technical Report TR 055, February 2018

Installation:

- Dry or wet concrete or waterfilled drillholes (not seawater)
- Hole drilling by hammer drill, compressed air drill, vacuum drill or diamond drill mode
- · Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the responsibility of the person responsible for technical matters of the site
- Internally threaded anchor rod: Screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used

Injection System VME plus	
Intended use Specifications	Annex B2

Table B1: Installation parameters for threaded rods

Threaded rod		M8	M10	M12	M16	M20	M24	M27	M30		
Diameter of threaded	rod	d=d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole dian	neter	d_0	[mm]	10	12	14	18	22	28	30	35
Effective engloses doubt	onth -	$h_{\text{ef,min}}$	[mm]	60	60	70	80	90	96	108	120
Effective anchorage d	ерш	$h_{\text{ef,max}}$	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in the	Pre-setting installation	d _f ≤	[mm]	9	12	14	18	22	26	30	33
fixture	Through sett installation	ing d _f ≤	[mm]	12	14	16	20	24	30	33	40
Maximum installation	torque m	ax.T _{inst} ≤	[Nm]	10	20	40 (35) ¹⁾	60	100	170	250	300
Minimum thickness of member h _{min}		[mm]	h _{ef} + 3	0mm ≥1	00mm			h _{ef} + 2d ₀	ı		
Minimum spacing		Smin	[mm]	40	50	60	75	95	115	125	140
Minimum edge distant	ce	Cmin	[mm]	35	40	45	50	60	65	75	80

¹⁾ max. installation torque for property class 4.6

Table B2: Installation parameters for internally threaded anchor rods

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d_0	[mm]	12	14	18	22	28	35
Effective anchorage depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective anchorage depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum installation torque n	nax.T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	lıg	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 3 ≥ 10	30mm 0mm	h _{ef} + 2d ₀			
Minimum spacing	Smin	[mm]	50	60	75	95	115	140
Minimum edge distance	Cmin	[mm]	40	45	50	60	65	80

¹⁾ with metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø	8	Ø	10	Ø	12	Ø 14	Ø 16	Ø 20	Ø	24	Ø	25	Ø 28	Ø 32
Diameter of rebar	d=d _{nom}	[mm]	8	3	1	0	1	2	14	16	20	2	4	2	5	28	32
Nominal drill hole diameter 1)	d ₀	[mm]	10	12	12	14	14	16	18	20	25	30	32	30	32	35	40
Effective anchorage	h _{ef,min}	[mm]	6	0	6	60	7	0	75	80	90	9	6	1(00	112	128
depth	h _{ef,max}	[mm]	16	60	20	00	24	10	280	320	400	48	30	50	00	560	640
Minimum thickness of member	h _{min}	[mm]	I	h _{ef} + 30 mm ≥ 100 mm			Ì					h _{ef} +	- 2d)			
Minimum spacing	Smin	[mm]	4	0	5	50	6	0	70	75	95	1:	20	12	20	130	150
Minimum edge distance	e Cmin	[mm]	3	5	4	-0	4	5	50	50	60	7	0	7	0	75	85

 $^{^{1)}}$ for $\varnothing 8$, $\varnothing 10$, $\varnothing 12$, $\varnothing 24$ and $\varnothing 25$ both nominal drill hole diameter can be used

Injection System VME plus	
Intended use Installation parameters	Annex B3

Table B4: Parameter for cleaning and setting tools

Threaded rod	Internally threaded anchor rod	Rebar	Drill bit Ø	Brush Ø	min. Brush Ø
				d _b	M
[-]	[-]	Ø [mm]	d ₀ [mm]	d ₅ [mm]	d _{b,min} [mm]
M8		8	10	11,5	10,5
M10	VMU-IG M6	8 / 10	12	13,5	12,5
M12	VMU-IG M8	10 / 12	14	15,5	14,5
		12	16	17,5	16,5
M16	VMU-IG M10	14	18	20,0	18,5
		16	20	22,0	20,5
M20	VMU-IG M12		22	24,0	22,5
		20	25	27,0	25,5
M24	VMU-IG M16		28	30,0	28,5
M27		24 / 25	30	31,8	30,5
		24 / 25	32	34,0	32,5
M30	VMU-IG M20	28	35	37,0	35,5
		32	40	43,5	40,5

Table B5: Retaining washer

Drill bit Ø		Installation direction and use						
d ₀ [mm]	[-]	•	+	1				
10								
12	No retaining washer required							
14								
16								
18	VM-IA 18							
20	VM-IA 20							
22	VM-IA 22							
25	VM-IA 25							
28	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all				
30	VM-IA 30	20011111	200111111					
32	VM-IA 32							
35	VM-IA 35							
40	VM-IA 40							

Vacuum drill bit

Vacuum drill bit (MKT Hollow drill bit SB, Würth Hammer drill bit with suction or Heller Duster Expert hollow drill bit system) and a vacuum cleaner with minimum negative pressure of 253 hPa and flow rate of minimum 42 l/s (150 m³/h)

Recommended compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

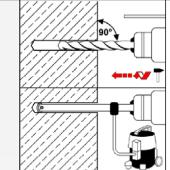
Injection	System	VME I	plus
-----------	--------	-------	------

Intended use

Cleaning and setting tools

Annex B4

Table B6: Working time and curing time


Conor	Concrete temperature		Working time	Minimum o	curing time
Conci	ete temp	Derature	Working time	dry concrete	wet concrete
0°C	to	+4°C	90 min	144 h	288 h
+5°C	to	+9°C	80 min	48 h	96 h
+10°C	to	+14°C	60 min	28 h	56 h
+15°C	to	+19°C	40 min	18 h	36 h
+20°C	to	+24°C	30 min	12 h	24 h
+25°C	to	+34°C	12 min	9 h	18 h
+35°C	to	+39°C	8 min	6 h	12 h
	+40°C		8 min	4 h	8 h
Cartrio	dge temp	perature		+5°C to +40°C	

Injection System VME plus	
Intended use Working and curing time	Annex B5

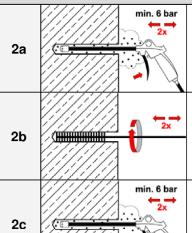
Installation instructions

Drilling of the drill hole and cleaning: Hammer drilling, compressed air drilling and vacuum drilling

Hammer drilling or compressed air drilling:

Drill with hammer drill or compressed air drill a hole into the base material with prescribed nominal drill hole diameter (Table B1, B2 or B3) and selected drillhole depth. Continue with step:2.

In case of aborted drill hole, the drill hole shall be filled with mortar.


Vacuum drilling: see Annex B4

Drill drillhole with prescribed nominal drill hole diameter (Table B1, B2 or B3) and selected drillhole depth. This drilling method removes dust and cleans the drillhole during drilling. Continue with step 3.

In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the drill hole must be removed before cleaning!

Cleaning: dry, wet and water-filled drill holes with all diameter in uncracked and cracked concrete (Cleaning not applicable when using vacuum drilling)

Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) a minimum of **two** times until return air stream is free of noticeable dust.

If the drillhole ground is not reached, an extension must be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $\geq d_{b,min}$ (Table B4) a minimum of **two** times.

If the drillhole ground is not reached with the brush, an appropriate brush extension must be used.

Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) again a minimum of **two** times until return air stream is free of noticeable dust.

If the drillhole ground is not reached, an extension must be used.

After cleaning, the drillhole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the drillhole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the drillhole again.

Injection System VME plus

Intended use

Installation instructions – Drilling and cleaning: Hammer drilling, compressed air drilling and vacuum drilling

Annex B6

Installation instructions (continuation)

Drilling of the drill hole and cleaning: Diamond drilling Drill a hole into the base material with prescribed nominal drill hole diameter 1 (Table B1, B2 or B3) and selected drillhole depth. Continue with step 2. In case of aborted drill hole, the drill hole shall be filled with mortar. Cleaning: dry, wet and water-filled drill holes with all diameter in uncracked concrete Remove drill core at least up to the nominal drill hole depth and check drill 2a hole depth. Flush drill hole with water, starting from the bottom until clear water gets out 2b of the drill hole. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $\geq d_{b,min}$ (Table B4) a minimum of **two** times. (miniminini 2c If the drillhole ground is not reached with the brush, an appropriate brush extension must be used. Flush drill hole again with water, starting from the bottom until clear water 2d gets out of the drill hole. Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) again a minimum of two times until return air 2e stream is free of noticeable dust. If the drillhole ground is not reached, an extension must be used. Check brush diameter (Table B4). Brush the hole again with an appropriate sized wire brush ≥ d_{b,min} (Table B4) a minimum of **two** times. 2f If the drillhole ground is not reached with the brush, an appropriate brush extension must be used. Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) again a minimum of two times until return air 2g stream is free of noticeable dust. If the drillhole ground is not reached, an extension must be used.

Injection System VME plus

Intended use

Installation instructions - Drilling and cleaning: Diamond drilling

Annex B7

Installation instructions (continuation)

Inject	ion	
3	No. of the last of	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B6) as well as for new cartridges, a new static-mixer shall be used.
4	hef	Prior to inserting the rod into the filled drillhole, the position of the embedment depth shall be marked on the threaded rod or rebar.
5	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.
6		Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. If the drill hole ground is not reached, an appropriate extension nozzle shall be used. Observe temperature dependent working times given in Table B6.
7		Retaining washer and mixer nozzle extensions shall be used according to Table B5 for the following applications: • Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and anchorage depth hef > 250mm • Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Injection System VME plus

Intended use

Installation instructions - Injection

Annex B8

Installation instructions (continuation)

Setting the fastening element Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is 8 reached. The anchor shall be free of dirt, grease, oil or other foreign material. Make sure that excess mortar is visible at the top of the hole and in case of through-setting installation also in the fixture. If these requirements are not 9 maintained, repeat application before end of working time! For overhead installation, the anchor should be fixed (e.g. by wedges). Allow the adhesive to cure to the specified time prior to applying any load or 10 torque. Do not move or load the anchor until it is fully cured (attend Table B6). 11 Remove excess mortar. $\mathbf{T}_{\mathsf{inst}}$ The fixture can be mounted after curing time. Apply installation torque Tinst 12 according to Table B1 or B2. In case of pre-setting installation the annular gap between anchor rod and fixture can optionally be filled with mortar. Therefore, replace regular washer by 13 washer with drill and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

on Syste	

Intended use

Installation instructions - Setting the fastening element

Annex B9

Table C1: Characteristic steel resistance for threaded rods under tension load

				M8							
Threaded rod					M10	M12	M16	M20	M24	M27	M30
Steel f	ailure										
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Charac	cteristic resistance under tens	sion load	1)								
eq pa	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, zinc plated	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
iiz	Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
teel	A2, A4 and HCR Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Stainless steel	A2, A4 and HCR Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	_3)	_3)
Stail	A4 and HCR Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Partial	factors 2)										
	Property class 4.6	γMs,N	[-]				2	,0			
eq	Property class 4.8	γMs,N	[-]				1	,5			
Steel, zinc plated	Property class 5.6	γMs,N	[-]				2	,0			
zinc	Property class 5.8	γMs,N	[-]				1	,5			
	Property class 8.8 γ _{Ms,N}		[-]	1,5							
teel	A2, A4 and HCR Property class 50 A2, A4 and HCR γ _{Ms,N} [-]		[-]				2,	86			
Stainless steel	A2, A4 and HCR Property class 70	γMs,N	[-]			1	,87			_3)	_3)
Staii	A4 and HCR Property class 80	γмs,N	[-]			1	,6			_3)	_3)

the characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

Injection System VME plus	
Performance Characteristic steel resistance for threaded rods under tension load	Annex C1

²⁾ in absence of national regulation

³⁾ Anchor type not part of the ETA

Table C2: Characteristic steel resistance for threaded rods under shear load
--

Threa	nded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel	failure										
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	acteristic resistance under shear load 1)										
Steel	failure <u>without</u> lever arm										
ted	Property class 4.6 and 4.8	V^0 Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Steel, zinc plated	Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
Zin	Property class 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
SS	A2, A4 and HCR, property class 50	V^0 Rk,s	[kN]	9	15	21	39	61	88	115	140
Stainless steel	A2, A4 and HCR, property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
ິທ ∐	A4 and HCR, property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	-	-
Steel	failure <u>with</u> lever arm										
eq	Property class 4.6 and 4.8	$M^0_{Rk,s}$	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Steel, zinc plated	Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	112
zin	Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	179
SS	A2, A4 and HCR, property class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	112
Stainless steel	A2, A4 and HCR, property class 70	$M^0_{Rk,s}$	[Nm]	26	52	92	232	454	784	_3)	_3)
S	A4 and HCR, property class 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896	_3)	_3)
Partia	al factor 2)										
_	Property class 4.6	γMs,V	[-]				1,6				
teel, plated	Property class 4.8	γMs,V	[-]				1,2				
Steel nc pla	Property class 5.6	γMs,V	[-]				1,€				
St	Property class 5.8	γMs,V	[-]	1,25							
	Property class 8.8	γMs,V	[-]				1,2	25			
ss _	A2, A4 and HCR, property class 50	γMs,V	[-]				2,3	38		ı	
Stainless steel	A2, A4 and HCR, property class 70	γMs,V	[-]			1,5	66			_3)	_3
Ś	A4 and HCR, property class 80	γMs,V	[-]			1,3	3			_3)	_3
										_	

the characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

³⁾ Anchor type not part of the ETA

Injection	System	VME	plus

Performance

Characteristic steel resistance for threaded rods under shear load

Annex C2

²⁾ in absence of national regulation

Table C3: Characteristic values for concrete cone and splitting failure

Threaded rods / Internall	y threaded anchor ro	all sizes								
Concrete cone failure										
Factorik	uncracked concrete	k _{ucr,N}	[-]	11,0						
Factor k ₁	cracked concrete	k _{cr,N}	[-]	7,7						
Edge distance		C _{cr,N}	[mm]	1,5 • h _{ef}						
Spacing		S _{cr,N}	[mm]	2 • Ccr,N						
Splitting failure										
Characteristic resistance		$N^0_{Rk,sp}$	[kN]	min ($N_{Rk,p}$; $N^0_{Rk,c}$)						
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}						
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 • h _{ef} (2,5 - h / h _{ef})						
	h/h _{ef} ≤ 1,3			2,4 • h _{ef}						
Spacing		S _{cr,sp}	[mm]	2 • C _{cr,sp}						

	•••		\
100		LVATAM	\ \/R/IL
		3001011	I VIVIE INITIS
	CCLICI	OVSICII	VME plus

Performance

Characteristic values for concrete cone and splitting failure

Annex C3

Table C4: Charac	cteristic values of ter	nsion load for	threaded rods,
static	and quasi-static ac	ction, working I	ife 50 years

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure												
Characteristic resistance	$N_{Rk,s}$	[kN]			A _s • f	uk (ors	ee Tabl	e C1)				
Partial factor		γMs,N	[-]				see Ta	ble C1				
Combined pull-out and	concrete failure											
Characteristic bond re	sistance in <u>uncrac</u>	<u>ked</u> cor	ncrete C2	0/25								
Temperature range I: 40°C / 24°C	hammer- or	₹Rk,ucr	[N/mm²]	20	20	19	19	18	17	16	16	
Temperature range II: 72°C / 50°C	compressed air drilling	τ _{Rk,ucr}	[N/mm²]	15	15	15	14	13	13	12	12	
Temperature range I: 40°C / 24°C	vacuum drilling	₹Rk,ucr	[N/mm²]	17 (16) ¹⁾	16	16	16 (15) ¹⁾	15	14	14	13	
Temperature range II: 72°C / 50°C	vacuum aniing	₹Rk,ucr	[N/mm²]	14	14	14	13	13	12	12	11	
Characteristic bond re	sistance in <u>cracke</u>	<u>d</u> concr	ete C20/2	5								
Temperature range I: 40°C / 24°C	hammer-, compressed air	τ _{Rk,cr}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	
Temperature range II: 72°C / 50°C	or vacuum drilling	TRk,cr	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	
Reductionfactor ψ ⁰ sus in	n concrete C20/25											
Temperature range I: 40°C / 24°C	hammer-, compressed air	$\psi^0 {\sf sus}$	[-]	0,80								
Temperature range II: 72°C / 50°C	or vacuum drilling	ψ^0_{sus}	[-]	[-] 0,68								
	C25/30		[-]				1,	02				
	C30/37		[-]	1,04								
Increasing factors for	C35/45	116-	[-]		1,07							
concrete	C40/50	Ψс	[-]	1,08								
	C45/55		[-]		1,09							
	C50/60		[-]				1,	10				
Concrete cone failure												
Relevant parameter							see Ta	able C3				
Splitting failure												
Relevant parameter							see Ta	ıble C3				
Installation factor												
dry or wet concrete		γinst	[-]				1	,0				
waterfilled drill hole	[-]	1,2										

Injection System VME plus

Performance

Characteristic values of tension loads for threaded rods, working life 50 years

Annex C4

Table C5: Characteristic values of tension load for threaded rods, static and quasi-static action, working life 100 years

Statio and quasi statio detion, working mo 100 years											
Threaded rod				М8	M10	M12	M16	M20	M24	M27	M30
Steel failure											
Characteristic resistance)	$N_{Rk,s}$	[kN]	A _s • f _{uk} (or see Table C1)							
Partial factor		γMs,N	[-]				see Ta	able C1			
Combined pull-out and concrete failure											
Characteristic bond re	sistance in <u>uncra</u>	<u>cked</u> cor	ncrete C2	0/25							
Temperature range I: 40°C / 24°C	Hammer- or	TRk,ucr,100	[N/mm²]	20	20	19	19	18	17	16	16
Temperature range II: 72°C / 50°C	compressed air drilling	τ _{Rk,ucr,100}	[N/mm²]	15	15	15	14	13	13	12	12
Temperature range I: 40°C / 24°C	- Vacuum drilling	τ _{Rk,ucr,100}	[N/mm²]	17 (16) ¹⁾	16	16	16 (15) ¹⁾	15	14	14	13
Temperature range II: 72°C / 50°C		TRk,ucr,100	[N/mm²]	14	14	14	13	13	12	12	11
Characteristic bond re	sistance in <u>crack</u> e	ed concr	ete C20/2	5							
Temperature range I: 40°C / 24°C	Hammer-, compressed air	τ _{Rk,cr,100}	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5
Temperature range II: 72°C / 50°C	or vacuum drilling	τRk,cr,100	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5
	C25/30		[-]	1,02							
	C30/37		[-]	1,04							
Increasing factors for	C35/45]	[-]	1,07							
concrete	C40/50	Ψο	[-]				1,	08			
	C45/55		[-]				1,	09			
	C50/60		[-]				1,	10			
Concrete cone failure											
Relevant parameter							see Ta	ıble C3			
Splitting failure											
Relevant parameter							see Ta	ıble C3			
Installation factor											
dry or wet concrete		γ̃inst	[-]	1,0							
waterfilled drill hole		γinst	[-]				1	,2			
wateriiled drill flole		γinst	[-]				ı	,८			

¹⁾ Value in brackets: characteristic bond resistance for waterfilled drill holes

Injection System VME plus	
Performance Characteristic values of tension loads for threaded rods, working life 100 years	Annex C5

Table C6: Characteristic values of tension load for threaded rods, static and quasi-static action, working life 50 and 100 years, diamond drilling in uncracked concrete

diamond drining in uncracked concrete													
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure													
Characteristic resistance	Characteristic resistance N _{Rk,s} [kN]					A _s • f _{uk} (or see Table C1)							
Partial factor		γMs,N	[-]				see Ta	able C1					
Combined pull-out and concrete failure													
Characteristic bond re	sistance in <u>uncra</u>	cked cor	ncrete C20	0/25					Workin	g life 50	years		
Temperature range I: 40°C / 24°C	diamond drilling	TRk,ucr	[N/mm²]	15	14	14	13	12	12	11	11		
Temperature range II: 72°C / 50°C	diamond drilling	₹Rk,ucr	[N/mm²]	12	12	11	10	9,5	9,5	9,0	9,0		
Reduction factor ψ ⁰ sus	in <u>uncracked</u> con	crete C2	0/25										
Temperature range I: 40°C / 24°C	diamond drilling	ψ^0 sus	[-]				0,	77					
Temperature range II: 72°C / 50°C	diamond drilling	[-]	0,72										
Characteristic bond resistance in uncracked concrete C20/25 Working life 100 year) years			
Temperature range I: 40°C / 24°C		τ _{Rk,ucr,100}	[N/mm²]	15	14	14	13	12	12	11	11		
Temperature range II: 72°C / 50°C	diamond drilling	τ _{Rk,ucr,100}	[N/mm²]	11	11	10	10	9,5	9,0	8,5	8,5		
	C25/30		[-]	1,04									
	C30/37		[-]	1,08									
Increasing factors for	C35/45		[-]	1,12									
concrete	C40/50	Ψο	[-]		1,15								
	C45/55		[-]				1,	17					
	C50/60		[-]	1,19									
Concrete cone failure													
Relevant parameter							see Ta	able C3					
Splitting failure													
Relevant parameter							see Ta	able C3					
Installation factor													
dry or wet concrete		γinst	[-]				1	,0					
waterfilled drill hole		γinst	[-]		1,2				1,4				

Injection System VME plus

Performance

Characteristic values of tension loads for threaded rods, working life 50 and 100 years, diamond drilling

Annex C6

Table C7: Characteristic values of shear loads for threaded rods, static and quasi-static action

Threaded rod	М8	M10	M12	M16	M20	M24	M27	M30		
Steel failure without lever arm										
Characteristic shear resistance Steel, property class 4.6, 4.8, 5.6 and 5.8	V^0 Rk,s	[kN]	0,6 ⋅ A _s ⋅ f _{uk} or see Table C2							
Characteristic shear resistance Steel, property class 8.8 Stainless steel A2, A4 and HCR (all property classes)	$V^0_{Rk,s}$	[kN]	0,5 ⋅ A _s ⋅ f _{uk} or see Table C2							
Ductility factor	k ₇	[-]	1,0							
Partial factor	$\gamma_{\text{Ms,V}}$	[-]	see Table C2							
Steel failure with lever arm										
Characteristic bending resistance	${\sf M}^0_{\sf Rk,s}$	[Nm]	1,2 • W _{el} • f _{uk} or see Table C2							
Elastic section modulus	W_{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]				see Ta	ble C2			
Concrete pry-out failure										
Pry-out factor	k ₈	[-]				2	,0			
Concrete edge failure										
Effective length of anchor	I _f	[mm]	min (h _{ef} ;12 d _{nom}) min (h _{ef} ;300mm							
Outside diameter of anchor	d_{nom}	[mm]	8 10 12 16 20 24 27 3				30			
Installation factor	γinst	[-]	1,0							

Injection System VME plus	
Performance Characteristic values of shear loads for threaded rods	Annex C7

Table C8: Characteristic values of tension load for threaded rods, seismic action (performance category C1 + C2), working life 50 and 100 years

Threaded rod				М8	M10	M12	M16	M20	M24	M27	M30
Tension loads											
Steel failure											
Characteristic resistance) C1	$N_{Rk,s,C1}$	[kN]				1,0 •	$N_{Rk,s}$			
Characteristic resistance steel, zinc plated, proper stainless steel A4 and H property class ≥ 70	N _{Rk,s,C2}	[kN]	_1)		1,0 • N _{Rk,s}			_1)			
Partial factor	[-]			'	see Ta	able C1					
Combined pull-out and	l concrete failu	re									
Characteristic bond re	sistance in cor	crete C20/2	5 to C50	/60							
Temperature range I:	hammer-,	τ Rk,C1	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5
40°C / 24°C	compressed	τ _{Rk,C2}	[N/mm ²]	-	1)	5,8	4,8	5,0	5,1	-	1)
Temperature range II:	air or vacuum	τ _{Rk,C1}	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0
72°C / 50°C	drilling	τ _{Rk,C2} [N/mm²]		_1)		5,0	5,0 4,1 4,3 4,4		_1)		
Installation factor						•					
Dry or wet concrete		γinst	[-]	1,0							
Waterfilled drill hole γ _{inst} [-] 1					,2						

¹⁾ No performance assessed

Table C9: Characteristic values of shear loads for threaded rods, seismic action (performance category C1 + C2)

			1			1	1						
Threaded roo	I			M8	M10	M12	M16	M20	M24	M27	M30		
Shear loads													
Steel failure	without lever arm												
Characteristic	resistance C1	$V_{Rk,s,C1}$	[kN]	•	0,7 • V ⁰ _{Rk,s}								
Characteristic resistance C2 steel, zinc plated, property class 8.8 stainless steel A4 and HCR, property class ≥ 70		$V_{Rk,s,C2}$	[kN]	_1)	_1) 0,7 • V ⁰ _{Rk,s} _1)				_1)				
Partial factor			[-]		see Table C2								
Factor for without annular gap					1,0								
anchorages	with annular gap between threaded rod and fixture	$lpha_{ ext{gap}}$	[-]	0,5									

¹⁾ No performance assessed

Injection System VME plus	
Performance Characteristic values for threaded rods under seismic action	Annex C8

Table C10: Characteristic values of tension loads for internally threaded anchor rod
static and quasi-static action, working life 50 years

Static	and quasi-sta	ilic act	ion, wo						
Internally threaded ar	nchor rod			VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20
Steel failure 1)				101 0	101 0	IVI 10	141 12	W 10	W ZO
Characteristic resistant	ce. 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
steel, zinc plated, prope		,.	[kN]	16	27	46	67	121	196
Partial factor 5.8 and 8		γMs,N	[-]			1	,5		
Characteristic resistand Stainless steel A4 / HC property class 70		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾
Partial factor		γMs,N	[-]			1,87			2,86
Combined pull-out an									
Characteristic bond r	esistance in <u>unc</u>	<u>racked</u> c	oncrete	C20/25					
Temperature range I: 40°C / 24°C	hammer- or compressed air	TRk,ucr	[N/mm²]	20	19	19	18	17	16
Temperature range II: 72°C / 50°C	drilling	τ _{Rk,ucr}	[N/mm²]	15	15	14	13	13	12
Temperature range I: 40°C / 24°C	vacuum drilling	τ _{Rk,ucr}	[N/mm²]	16	16	16 (15) ³⁾	15	14	13
Temperature range II: 72°C / 50°C	vacuum ummig	TRk,ucr	[N/mm²]	14	14	13	13	12	11
Characteristic bond r	0/25			•	•	1			
Temperature range I: 40°C / 24°C	hammer-, compressed air	TRk,cr	[N/mm²]	7,0	8,5	8,5	8,5	8,5	8,5
Temperature range II: 72°C / 50°C	or vacuum drilling	τ _{Rk,cr}	[N/mm²]	6,0	7,0	7,0	7,0	7,0	7,0
Reductionfactor ψ ⁰ sus									
Temperature range I: 40°C / 24°C	hammer-, compressed air	ψ^0 sus	[-]			0,	80		
Temperature range II: 72°C / 50°C	or vacuum drilling	ψ^0 sus	[-]			0,	68		
			C25/30				02		
			C30/37				04		
Increasing factor for co	ncrete	Ψс	C35/45				07		
		·	C40/50				08		
			C50/60				09		
Concrete cone failure			C50/60			Ι,	10		
Relevant parameter						see Ta	ıble C3		
Splitting failure						200 10			
Relevant parameter see Table C3									
Installation factor									
dry or wet concrete		γinst	[-]	1,0					
waterfilled drill hole		γinst	[-]			1	,2		
UfCastanina savavva av thu	مرام ما المصام المصام	مندن امصماني			صححت مطلا طلائب		سلمصم امنسمه		a a a f + la a

^{1)f}Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System VME plus

Performance

Characteristic values of **tension loads** for **internally threaded anchor rod**, working life **50 years**

Annex C9

²⁾ for VMÚ-IG M20: property class 50

³⁾ value in bracket is valid for waterfilled drill hole

Table C11: Characteristic values of tension loads for internally threaded anchor rod static and quasi-static action, working life 100 years

Internally threaded an	chor rod				VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20		
Steel failure 1)												
Characteristic resistance	ce,	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
steel, zinc plated, prope	erty class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor 5.8 and 8.	.8		γMs,N	[-]			1	,5				
Characteristic resistand Stainless steel A4 / HC property class 70			N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾		
Partial factor			γMs,N	[-]	1,87 2,86							
Combined pull-out an	d concrete t	ailur	е									
Characteristic bond re	esistance in	uncr	acked c	oncrete	C20/25							
Temperature range I: 40°C / 24°C	hammer- compresse		τ _{Rk,ucr,100}	[N/mm²]	20	19	19	18	17	16		
Temperature range II: 72°C / 50°C	drilling		τ _{Rk,ucr,100}	[N/mm²]	15	15	14	13	13	12		
Temperature range I: 40°C / 24°C	vacuum drilling		τ _{Rk,ucr,100}	[N/mm²]	16	16	16 (15) ³⁾	15	14	13		
Temperature range II: 72°C / 50°C			TRk,ucr,100	[N/mm²]	14	14	13	13	12	11		
Characteristic bond re	esistance in	<u>crac</u>	<u>ked</u> con	crete C2	0/25							
Temperature range I: 40°C / 24°C	hammer compresse	d air	τ _{Rk,cr,100}	[N/mm²]	6,5	7,5	7,5	7,5	7,5	7,5		
Temperature range II: 72°C / 50°C	or vacuu drilling	m	TRk,cr,100	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5		
				C25/30			1,	02				
				C30/37			1,	04				
Increasing factor for co	ncrete))(-	C35/45			1,	07				
moreasing lactor for co	Horete		Ψα	C40/50			1,	08				
				C45/55			1,	09				
				C50/60			1,	10				
Concrete cone failure												
Relevant parameter							see Ta	ble C3				
Splitting failure												
Relevant parameter							see Ta	ble C3				
Installation factor					-							
dry or wet concrete			γinst	[-]	1,0							
waterfilled drill hole γ_{inst} [-]				F 1	1,2							

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System VME plus Performance

Characteristic values of **tension loads** for **internally threaded anchor rod**, working life **100 years**

Annex C10

²⁾ for VMU-IG M20: property class 50

³⁾ value in bracket is valid for waterfilled drill hole

Table C12: Characteristic values of tension loads for internally threaded anchor rod, static and quasi-static action, working life 50 and 100 years, diamond drilling

Internally threaded and	chor rod				VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20	
Steel failure 1)											
Characteristic resistance	e,	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
steel, zinc plated, prope	rty class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor 5.8 and 8.8	artial factor 5.8 and 8.8			[-]		1,5					
	Characteristic resistance, stainless steel A4 / HCR, property class 70		$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor			γMs,N	[-]			1,87			2,86	
Combined pull-out and	d concrete fa	ailure	•								
Characteristic bond re	sistance in	uncr	acked c	oncrete	C20/25			W	orking life	50 years	
Temperature range I: 40°C / 24°C	diamond dril	lina	τ _{Rk,ucr}	[N/mm²]	14	14	13	12	12	11	
Temperature range II: 72°C / 50°C	diamond drilling		₹Rk,ucr	[N/mm²]	12	11	10	9,5	9,5	9,0	
Reduktionsfaktor ψ ⁰ sus	5										
Temperature range I: 40°C / 24°C	diamond drilling		$\psi^0_{\sf sus}$	[-]		0,77					
Temperature range II: 72°C / 50°C			ψ^0 sus	[-]		0,72					
Characteristic bond re	sistance in	uncr	acked c	oncrete	C20/25			Wo	rking life	100 years	
Temperature range I: 40°C / 24°C	diamond dril	lling	τ _{Rk,ucr,100}	[N/mm²]	14	14	13	12	12	11	
Temperature range II: 72°C / 50°C	diamond din	illing	τ _{Rk,ucr,100}	[N/mm²]	11	10	10	9,5	9,0	8,5	
				C25/30				04			
				C30/37				08			
Increasing factor for τ_{Rk} ,	ucr		Ψc	C35/45				12			
.				C40/50				15			
				C45/55				17			
Congrete cons failure				C50/60			1,	19			
Concrete cone failure							200 To	bla C2			
Relevant parameter							see ra	ble C3			
Splitting failure							000 To	ble C3			
Relevant parameter							see ra	DIE C3			
Installation factor				F 3			<u> </u>	0			
dry or wet concrete			γ̃inst	[-]	1,0						
waterfilled drill hole γ _{inst}			[-]	1,	2		1,	4			

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System VME plus

Performance

Characteristic values of **tension loads** for **internally threaded anchor rod**, working life **50 and 100 years**, **diamond drilling**

Annex C11

²⁾ for VMÚ-IG M20: property class 50

³⁾ value in bracket is valid for waterfilled drill hole

Table C13: Characteristic values of shear loads for internally threaded anchor rod, static and quasi-static action

Interna	lly threaded anchor rod				VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20	
Steel fa	ailure <u>without</u> lever arm 1)										
, ted	Characteristic resistance,	5.8	$V^0_{Rk,s}$	[kN]	6	10	17	25	45	74	
Steel, zinc plated	property class	8.8	$V^0_{Rk,s}$	[kN]	8	14	23	34	60	98	
zir	Partial factor 5.8 and 8.8		γMs,V	[-]			1,	25			
Stainless steel	Characteristic resistance, A4 / HCR, property class 70		V ⁰ Rk,s	[kN]	7	13	20	30	55	62 ²⁾	
Sta	Partial factor		γMs,V	[-]			1,56			2,38	
Ductility	Ductility factor			[-]			1	,0			
Steel fa	ailure <u>with</u> lever arm 1)										
pə	Characteristic bending		M ⁰ Rk,s	[Nm]	8	19	37	66	167	325	
Steel, zinc plated	resistance, property class	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519	
zin	Partial factor 5.8 and 8.8		γMs,V	[-]	1,25						
Stainless steel	Characteristic bending resista A4 / HCR, property class 70	nce	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾	
Sta	Partial factor		γMs,V	[-]	1,56					2,38	
Concre	ete pry-out failure										
Pry-out	Pry-out factor			[-]			2	,0			
Concre	ete edge failure										
Effectiv	Effective length of anchor		lf	[mm]	min (her;12 d _{nom})					min (h _{ef} ; 300mm)	
Outside	e diameter of anchor		d _{nom}	[mm]	10	12	16	20	24	30	
Installation factor			γ̃inst	[-]	1,0						

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod (exception: VMU-IG M20). The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System VME plus	
Performance Characteristic values of shear loads for internally threaded anchor rod	Annex C12

²⁾ for VMU-IG M20: Internally threaded rod: property class 50; Fastening screws or threaded rods (incl. nut and washer): property class 70

		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
N _{Rk,s}	[kN]					A _s •	f _{uk} 1)				
As	[mm²]	50	79	113	154	201	314	452	491	616	804
γMs,N	[-]					1,4	4 ²⁾				
1						<u> </u>					
eked co	oncrete C	20/25									
τ _{Rk,ucr}	[N/mm²]	16	16	16	16	16	16	15	15	15	15
τ _{Rk,ucr}	[N/mm²]	12	12	12	12	12	12	12	12	11	1
τRk,ucr	[N/mm²]	14 (13) ³⁾	14 (13) ³⁾	13	13	13	13	13	13	13	13
τRk,ucr	[N/mm²]	12 (11) ³⁾	12 (11) ³⁾	12 (11) ³⁾	11	11	11	11	11	11	1
<u>:d</u> cond	crete C20	25									
τ _{Rk,cr}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,
τ _{Rk,cr}	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,
ψ^0 sus	[-]					0,	80				
ψ^0_{sus}	[-]						68				
	C25/30						02				
	C30/37 C35/45						04 07				—
Ψc	C40/50						07 08				
							09				
						1,	10				
Relevant parameter						see Ta	able C3	3			
Splitting failure											
					5	see Ta	ble C	3			
γinst											
	γinst	γ _{inst} [-]	γinst [-]	γinst [-]		γinst [-] γinst [-]	γinst [-] 1 γinst [-] 1	γ _{inst} [-] 1,0 γ _{inst} [-] 1,2	γ _{inst} [-] 1,2	γ _{inst} [-] 1,0 γ _{inst} [-] 1,2	γ _{inst} [-] 1,0 γ _{inst} [-] 1,2

f_{uk} shall be taken from the specifications of reinforcing bars
 in absence of national regulation
 value in brackets: characteristic bond resistance for waterfilled drill holes

Injection System VME plus	
Performance Characteristic values of tension loads for rebar, working life 50 years	Annex C13

Table C15:	Characteristic values of tension loads for rebar ,
	static and quasi-static action, working life 100 years

Reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 24 Ø 25 Ø 28 Ø 32													
Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension r	resistance	$N_{Rk,s}$	[kN]					A _s •	$f_{uk}^{1)}$				
Cross sectional area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γMs,N	[-]					1,4	4 ²⁾				
Combined pull-out an	nd concrete failu	re											
Characteristic bond re	esistance in <u>unc</u>	cracked co	oncrete C	20/25									
Temperature range I: 40°C / 24°C	hammer- and compressed	τ _{Rk,ucr,100}	[N/mm²]	16	16	16	16	16	16	15	15	15	15
Temperature range II: 72°C / 50°C	air drilling	τ _{Rk,ucr,100}	[N/mm²]	12	12	12	12	12	12	12	12	11	11
Temperature range I: 40°C / 24°C	voorum drilling	τ _{Rk,ucr,100}	[N/mm²]	14 (13) ³⁾	14 (13) ³⁾	13	13	13	13	13	13	13	13
Temperature range II: 72°C / 50°C	vacuum drilling	τ _{Rk,ucr,100}	[N/mm²]	12 (11) ³⁾	12 (11) ³⁾	12 (11) ³⁾	11	11	11	11	11	11	11
Characteristic bond re	crete C20	/25		•		•		•	•	•			
Temperature range I: 40°C / 24°C	hammer-, compressed	TRk,cr,100	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
Temperature range II: 72°C / 50°C	air or vacuum drilling	TRk,cr,100	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
			C25/30		1,02								
			C30/37					1,	04				
Increasing factor for co	ncrete	Ψс	C35/45						07				
mercaemig raister for es		40	C40/50						08				
			C45/55						09				
			C50/60					1,	10				
Concrete cone failure				Ι									
Relevant parameter								see Ta	able C	3			
Splitting failure													
Relevant parameter							;	see Ta	able C	3			
Installation factor													
dry or wet concrete		γinst	[-]	1,0									
waterfilled drill hole		γinst	[-]					1	,2				

f_{uk} shall be taken from the specifications of reinforcing bars
 in absence of national regulation
 value in brackets: characteristic bond resistance for waterfilled drill holes

Injection System VME plus	
Performance Characteristic values of tension loads for rebar, working life 100 years	Annex C14

Table C16: Characteristic values of tension loads for rebar, static and quasi-static action, working life 50 and 100 years, diamond drilling

			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
esistance	$N_{Rk,s}$	[kN]					As •	fuk ¹⁾				
	As	[mm²]	50	50 79 113 154 201 314 452 491 616 8								804
	γMs,N	[-]					1,4	1 ²⁾				
d concrete failu	re											
sistance in <u>unc</u>	cracked co	oncrete C	20/25						Worl	cing li	fe 50 y	/ears
diamond	₹Rk,ucr	[N/mm²]	14	13	13	13	12	12	11	11	11	11
drilling	τ̃Rk,ucr	[N/mm²]	11	11	10	10	10	9,5	9,5	9,5	9,0	9,0
diamond	ψ^0 sus	[-]	0,77									
drilling	ψ^0 sus	[-]	0,72									
Characteristic bond resistance in uncracked concrete									Worki	ng life	100 y	ears/
diamond	τ _{Rk,ucr,100}	[N/mm²]	14	13	13	13	12	12	11	11	11	11
drilling	τRk,ucr,100	[N/mm²]	11	10	10	10	9,5	9,0	9,0	9,0	8,5	8,5
		C25/30					1,	04				
		C30/37										
ncrete	Ψc						-					
	, ,											
		C50/60					١,	19				
							200 T-	ble C)			
							see ra	ible Ca)			
								-1- 61				
							see 1a	ible Ca	5			
	γinst											
161 .1	γinst			1	,2				1	,4		
	diamond drilling diamond drilling diamond drilling esistance in und diamond drilling	As \[\gamma_{Ms,N} \] cl concrete failure esistance in uncracked concrete failure diamond drilling \[\psi_{Rk,ucr} \] \[\psi_{sus} \] esistance in uncracked concrete \[\psi_{Rk,ucr,100} \] \[\psi_{Rk,ucr,100	As [mm²] γMs,N [-] d concrete failure esistance in uncracked concrete Co	esistance N _{RK,s} [kN]	Pesistance N _{Rk,s} [kN]	Pesistance NRk,s [kN] As [mm²] 50 79 113 YMs,N [-] Cl concrete failure Psistance in uncracked concrete C20/25 diamond drilling TRk,ucr [N/mm²] 14 13 13 13 14 15 15 15 15 15 15 15	Pasistance N _{Rk,s} [kN]	As [mm²] 50 79 113 154 201 yms,N [-]	As [mm²] 50 79 113 154 201 314 yms,N [-] 1,4 ²) diamond drilling	As [RN]	As [mm²] 50 79 113 154 201 314 452 491 7/Ms,N [-] 1,4 2 d concrete failure sistance in uncracked concrete C20/25 diamond drilling	Pasistance N _{Fik,s} [kN] As · f _{ink} 1) As [mm²] 50 79 113 154 201 314 452 491 616 yms,

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Injection System VME plus

Performance

Characteristic values of tension loads for rebar, working life 50 and 100 years, diamond drilling

Annex C15

²⁾ in absence of national regulation

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	$V^0_{Rk,s}$	[kN]					0,50 • /	∆ s • f _{uk} ¹)	1			
Cross sectional area	A_s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γMs,V	[-]	1,5 ²⁾									
Ductility factor	k 7	[-]	1,0									
Steel failure with lever arm												
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	1,2 • W _{el} • f _{uk} ¹⁾									
Elastic section modulus	Wel	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γMs,V	[-]					1,	5 ²⁾				
Concrete pry-out failure												
Pry-out factor	k_8	[-]					2	,0				
Concrete edge failure												
Effective length of rebar	lf	[mm]	min (h _{ef} ;12 d _{nom}) min (h _{ef} ; 300mm)mm)		
Outside diameter of rebar	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]	1,0									

 $^{^{1)}\,}f_{uk}\,shall$ be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection System VME plus	
Performance Characteristic values of shear loads for rebar	Annex C16

Table C18: Characteristic values of tension load for rebar, seismic action (performance category C1), working life 50 and 100 years

Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic resistance	e	$N_{\text{Rk},s,\text{C1}}$	[kN]					As •	$f_{uk}^{1)}$				
Cross sectional area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	[-]					1,4	l ²⁾						
Combined pull-out and concrete failure													
Characteristic bond resistance in concrete C20/25 to C50/60													
Temperature range I: 40°C / 24°C	hammer-, compressed air	TRk,C1	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Temperature range II: 72°C / 50°C	or vacuum drilling	TRk,C1	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Installation factor													
dry or wet concrete		γinst	[-]					1,	0				
waterfilled drill hole γ_{inst} [-]								1,	2				

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars 2) in absence of national regulation

Table C19: Characteristic values of shear loads for rebar, seismic action (performance category C1)

Reinforcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic resistance	$V_{Rk,s,C1}$	[kN]	0,35 • A _s • f _{uk} ¹⁾									
Cross sectional area	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γMs,V	[-]	1,5 2)									
Ductility factor	k ₇	[-]	1,0									

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Injection System VME plus	
Performance Characteristic values for rebar under seismic action	Annex C17

²⁾ in absence of national regulation

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Hammer-, compresse	ed air or vac	uum drilling								
Displacement factor ¹⁾ Uncracked concrete, s		asi-static action	on. work	ina life 5	in and 1	00 vears				
Temperature range I:	δ_{N0} - factor		0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C / 24°C	δ _{N∞} - factor	, mm	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperature range II:	δ _{N0} - factor	$\left[\frac{\mathrm{mm}}{N/mm^2}\right]$	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
72°C / 50°C	δ _{N∞} - factor		0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Displacement factor ¹⁾ Cracked concrete, state		-static action	working	ı life 50	and 100	vears				
Temperature range I:	δ_{N0} - factor	-Statio action,	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,08
40°C / 24°C	δ _{N∞} - factor	, mm	0,100	0,115	0,122	0,128	0,135	0,142	0,155	0,17
Temperature range II:	δ _{N0} - factor	$\left[\frac{\mathrm{mm}}{N/mm^2}\right]$	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
72°C / 50°C	δ _{N∞} - factor		0,134	0,154	0,163	0,172	0,181	0,189	0,207	0,22
Displacement Uncracked and cracke	ed concrete	eeismic actiou	2 (C2)							
All temperature	δN,C2 (DLS)				0,21	0,24	0,27	0,36		
ranges	δn,c2 (ULS)	[mm]		2)	0,54	0,51	0,54	0,63		2)
Diamond drilling										
Displacement factor ¹⁾ Uncracked concrete, s		asi-static actio	on work	ina life 5	in vears					
Temperature range I:	δ _{NO} - factor	adi diano de	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,01
40°C / 24°C	δ _{N∞} - factor	, mm	0,018	0,019	0,019	0,020	0,022	0,023	0,024	0,02
Temperature range	δ _{N0} - factor	$\left[\frac{\mathrm{mm}}{N/mm^2}\right]$	0,013	0,014	0,014	0,015	0,016	0,016	0,018	0,01
II: 72°C / 50°C	δ _{N∞} - factor		0,052	0,053	0,055	0,058	0,062	0,065	0,068	0,07
Displacement factor ¹⁾ Uncracked concrete, s		asi-static actio	on. work	ina life 1	00 years					
	δ _{NO} - factor	131 Glatie ac	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,01
Temperature range I: 40°C / 24°C	δ _{N∞} - factor	, mm	0,020	0,021	0,021	0,023	0,024	0,025	0,026	0,02
Temperature range										
Temperature range	δ _{N0} - factor	$\lfloor \frac{N}{mm^2} \rfloor$	0,013	0,014	0,014	0,015	0,016	0,016	0,018	0,01

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : acting bond stress under tension load

Injection System VME plus

Performance

Displacements (threaded rod under tension load)

Annex C18

 $[\]delta_{N\infty} = \delta_{N\infty}\text{-factor} \cdot \tau;$

²⁾ No Performance assessed

Table C21: Displacements under shear load, threaded rod

Threaded rod	Threaded rod					M16	M20	M24	M27	М30	
All drilling methods											
Displacement fact Uncracked and cra		e, static and qua	si-static	action							
All temperature ranges	δvo- factor	[mm//kN]\]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
	δ _{V∞} - factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Displacement Uncracked and cra	Displacement Uncracked and cracked concrete, seismic action (C2)										
All temperature	$\delta_{\text{V,G2 (DLS)}}$	[mm]		2)	3,1	3,4	3,5	4,2		2)	
ranges	δ V,C2 (ULS)	[mm]	/		6,0	7,6	7,3	10,9	_	-,	

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{- factor } \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{- factor } \cdot V; \end{split}$$
V: acting shear load

2) No Performance assessed

Injection System VME plus

Performance

Displacements (threaded rod under shear load)

Annex C19

Table C22: Displacement factors¹⁾ under tension load, internally threaded anchor rod

Internally threaded anch	nor rod		VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20
Hammer-, compressed	l air or vaccu	m drilling						
Uncracked concrete, sta	atic and quasi	-static action,	working li	fe 50 and 1	00 years			
Temperature range I:	δ_{N0} - factor		0,029	0,030	0,033	0,035	0,038	0,041
40°C / 24°C	δ _{N∞} - factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm^2}}\right]$	0,029	0,030	0,033	0,035	0,038	0,041
Temperature range II:	δ_{N0} - factor	LN/mm ² J	0,039	0,040	0,044	0,047	0,051	0,055
72°C / 50°C	δ _{N∞} - factor		0,049	0,051	0,055	0,059	0,064	0,070
Cracked concrete, static	and quasi-st	atic action, w	orking life	50 and 100	years			
Temperature range I:	δ _{N0} - factor		0,071	0,072	0,074	0,076	0,079	0,082
40°C / 24°C	δ _{N∞} - factor	$\left[\frac{\text{mm}}{\text{N/mm}^2}\right]$	0,115	0,122	0,128	0,135	0,142	0,171
Temperature range II: 72°C / 50°C	δ _{N0} - factor	$\frac{1}{N/mm^2}$	0,095	0,096	0,099	0,102	0,106	0,110
	δ _{N∞} - factor		0,154	0,163	0,172	0,181	0,189	0,229
Diamond drilling								
Uncracked concrete, sta	atic and quasi	-static action,	working li	fe 50 years	5			
Temperature range I:	δ_{N0} - factor		0,012	0,012	0,013	0,014	0,014	0,015
40°C / 24°C	δ _{N∞} - factor	rmm1	0,019	0,019	0,020	0,022	0,023	0,025
Temperature range II:	δ _{N0} - factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm^2}}\right]$	0,014	0,014	0,015	0,016	0,016	0,018
72°C / 50°C	δ _{N∞} - factor		0,053	0,055	0,058	0,062	0,065	0,070
Cracked concrete, static	c and quasi-st	atic action, w	orking life	100 years				
Temperature range I:	δ _{N0} - factor		0,012	0,012	0,013	0,014	0,014	0,015
40°C / 24°C	δ _{N∞} - factor	mm	0,021	0,021	0,023	0,024	0,025	0,027
Temperature range II:	δ _{N0} - factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm^2}}\right]$	0,014	0,014	0,015	0,016	0,016	0,018
72°C / 50°C	δ _{N∞} - factor		0,039	0,040	0,043	0,045	0,047	0,051

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{- factor } \cdot \tau; \hspace{1cm} \tau\text{: acting bond stress under tension load}$

 $\delta_{N\infty} = \delta_{N\infty}\text{- factor} \cdot \tau;$

Table C23: Displacement factors¹⁾ under shear load, internally threaded anchor rod

Internally threaded anch	VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20						
Uncracked and cracked concrete, static and quasi-static action												
All temperature ranges	δ _{vo} - factor		0,07	0,06	0,06	0,05	0,04	0,04				
	δν∞- factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06				

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{- factor} \quad V; \qquad \qquad V\text{: acting shear load}$

 $\delta_{V\infty} = \delta_{V\infty}$ - factor · V;

Injection System VME plus

Performance

Displacements (internally threaded anchor rod)

Annex C20

	Table C24: Displacement factors ¹⁾ under tension load (rebar)													
Temperature range I: 40°C / 24°C δηνο- factor / δηνο-	Ø 24	0 Ø 24	Ø 25	Ø 28	Ø 32									
Temperature range I: δNo- factor 40°C / 24°C	Hammer-, compressed air or vaccum drilling													
Temperature range II: $\frac{\delta_{No^-}}{\delta_{No^-}}$ factor δ_{No	Uncracked concrete, static and quasi-static action, working life 50 and 100 years													
Temperature range II:	0,038	5 0,038	0,038	0,040	0,043									
Temperature range II:	0,020	9 0,020	0,020	0,021	0,023									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,051	7 0,051	0,051	0,054	0,058									
Temperature range I: $\frac{\delta_{\text{No}^-} \text{ factor}}{\delta_{\text{No}^-} \text{ factor}}$ $\frac{\delta_{\text{No}^-} \text{ factor}}$	0,065	9 0,065	0,065	0,068	0,072									
$ \frac{40^{\circ}\text{C} / 24^{\circ}\text{C}}{72^{\circ}\text{C} / 50^{\circ}\text{C}} = \frac{\delta_{\text{No}^{-}} \text{ factor}}{\delta_{\text{No}^{-}} \text{ factor}} = \frac{\delta_{\text{No}^{-}} \text{ factor}}{\delta$	Cracked concrete, static and quasi-static action, working life 50 and 100 years													
Temperature range II: $\frac{\delta_{\text{N0}^-} \text{ factor}}{\delta_{\text{N\infty}^-} \text{ factor}}$ $\frac{\delta_{\text{N0}^-} \text{ factor}}{\delta_{\text{N0}^-} facto$	0,079	6 0,079	0,079	0,081	0,084									
Temperature range I: δ_{No^-} factor	0,171	5 0,171	0,171	0,181	0,194									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,106	2 0,106	0,106	0,109	0,113									
Uncracked concrete, static and quasi-static action, working life 50 years Temperature range I: 40° C / 24°C $\frac{\delta_{N0^{-}}}{\delta_{N\infty^{-}}}$ factor $\frac{\delta_{N0^{-}}}{\delta_{N0^{-}}}$ factor $\frac{\delta_{N0^{-}}}{\delta_{N$	0,229	7 0,229	0,229	0,242	0,260									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \frac{40^{\circ}\text{C} / 24^{\circ}\text{C}}{24^{\circ}\text{C}} = \frac{\delta_{\text{N}\infty^{-}} \text{ factor}}{\delta_{\text{N}\infty^{-}} \text{ factor}} = \frac{\delta_{\text{N}0^{-}} \text{ factor}}{\delta_{\text{N}0^{-}} $														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,013	2 0,013	0,013	0,014	0,015									
Temperature range ii. $\frac{6.60 \text{ ks}}{600 \text{ ks}}$ factor $\frac{6.60 \text{ ks}}{600 \text{ ks}}$ $\frac{6.60 \text{ ks}}$	0,027	4 0,027	0,027	0,028	0,031									
72°C / 50°C $\delta_{N\infty^-}$ factor 0,048 0,051 0,054 0,058 0,061 0,068 0, Uncracked concrete, static and quasi-static action, working life 100 years	0,015	4 0,015	0,015	0,016	0,018									
	0,076	8 0,076	0,076	0,081	0,088									
Temperature range I: δ_{N0} - factor 0,008 0,009 0,009 0,010 0,011 0,012 0,														
remperature range i.	0,013	2 0,013	0,013	0,014	0,015									
	0,029	6 0,029	0,029	0,031	0,034									
Temperature range II: δ _{N0} - factor N/mm ² 0,009 0,011 0,011 0,012 0,013 0,014 0,	0,015	4 0,015	0,015	0,016	0,018									
7000 / 5000	0,055	9 0,055	0,055	0,059	0,064									

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-} \text{ factor } \cdot \tau; \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-} \text{ factor } \cdot \tau; \end{split}$$

τ: acting bond stress under tension load

Table C25: Displacement factors¹⁾ under shear load (rebar)

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked and cracked concrete, static and quasi-static action												
All temperature ranges	δ _{vo} - factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
	δ _{V∞} - factor		0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ - factor \cdot V;

V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ - factor · V;

Injection System VME plus

Performance

Displacements (rebar)

Annex C21