

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/0773 of 1 March 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Injection system VME Product family Bonded anchor for use in uncracked concrete to which the construction product belongs MKT Manufacturer Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND Manufacturing plant Werk 2, D This European Technical Assessment 19 pages including 3 annexes which form an integral part contains of this assessment Guideline for European technical approval of "Metal This European Technical Assessment is anchors for use in concrete", ETAG 001 Part 5: "Bonded issued in accordance with Regulation (EU) No 305/2011, on the basis of anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU)

No 305/2011.

European Technical Assessment ETA-13/0773 English translation prepared by DIBt

Page 2 of 19 | 1 March 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 1 March 2017

European Technical Assessment ETA-13/0773 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection System VME for concrete" is a bonded anchor consisting of a cartridge with injection mortar VME or VM-ME and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M10 to M24 or reinforcing bar in the range of diameter 10 to 25 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-13/0773

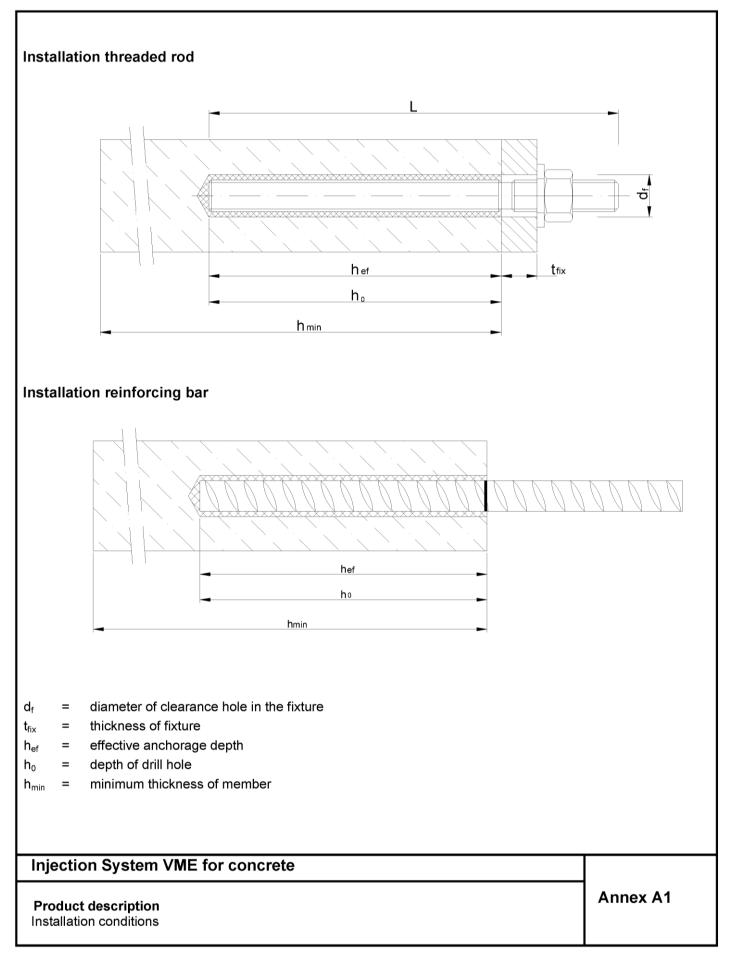
Page 4 of 19 | 1 March 2017

English translation prepared by DIBt

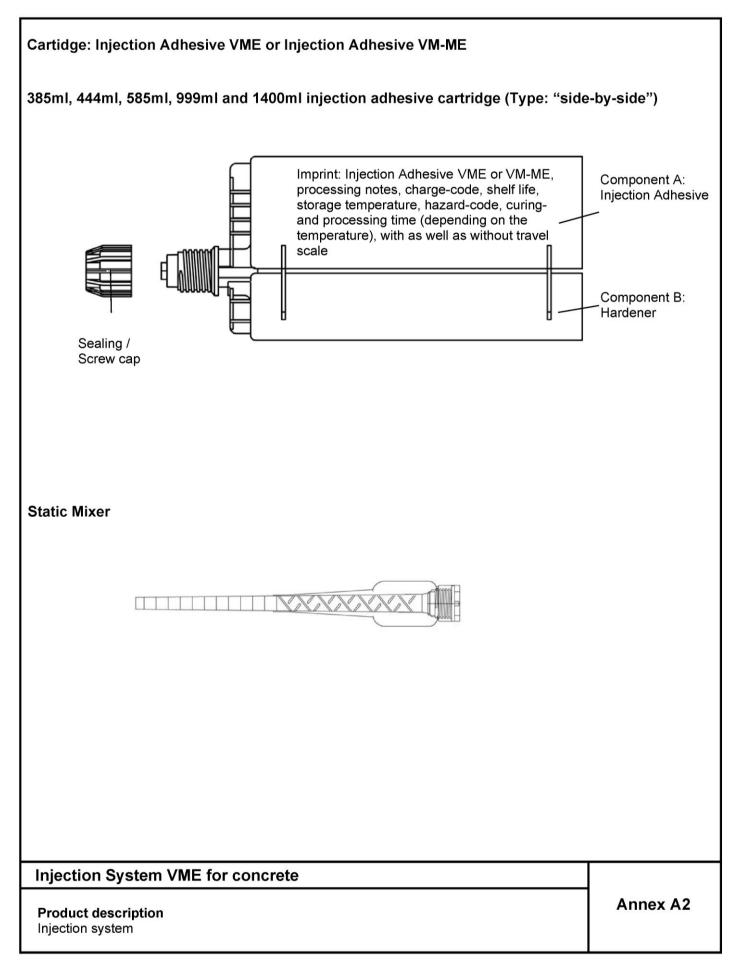
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

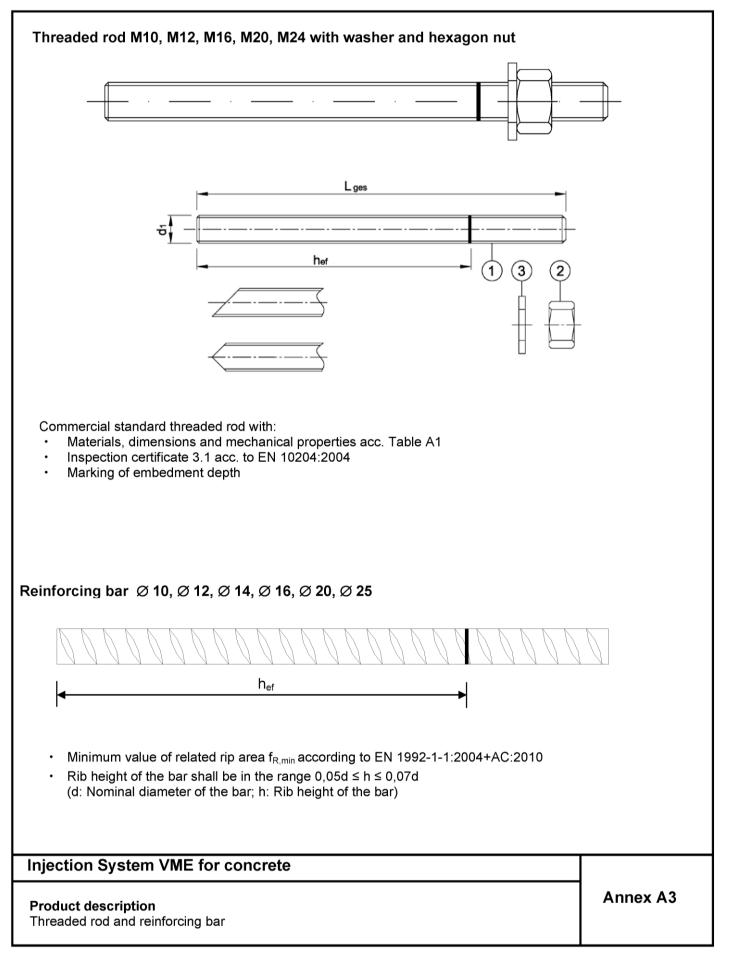
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 1 March 2017 by Deutsches Institut für Bautechnik


Uwe Bender Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-13/0773 of 1 March 2017



ic plated ≥ 5 μm acc. to EN ISO 4 t-dip galvanised ≥ 40 μm acc. to readed rod xagon nut isher, acc. to EN ISO 887:2006, ISO 7089:2000, EN ISO	EN ISO 1461:2009 and EN ISO 10684:2004+AC:2 Steel, acc. to EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8, EN ISO 898-1 Steel, acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) acc. to EN ISO Property class 5 (for class 5.8 rod) acc. to EN ISO	898-2:2012, 898-2:2012,					
readed rod xagon nut isher, acc. to EN ISO 887:2006,	Steel, acc. to EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8, EN ISO 898-1 Steel, acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) acc. to EN ISO Property class 5 (for class 5.8 rod) acc. to EN ISO	898-2:2012, 898-2:2012,					
xagon nut Isher, acc. to EN ISO 887:2006,	Property class 4.6, 5.8, 8.8, EN ISO 898-1 Steel, acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) acc. to EN ISO Property class 5 (for class 5.8 rod) acc. to EN ISO	898-2:2012,					
sher, acc. to EN ISO 887:2006,	Steel, acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) acc. to EN ISO Property class 5 (for class 5.8 rod) acc. to EN ISO	898-2:2012,					
sher, acc. to EN ISO 887:2006,	Property class 4 (for class 4.6 rod) acc. to EN ISO Property class 5 (for class 5.8 rod) acc. to EN ISO	898-2:2012,					
		Property class 4 (for class 4.6 rod) acc. to EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) acc. to EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) acc. to EN ISO 898-2:2012					
93:2000, or EN ISO 7094:2000	Steel, zinc plated or hot dip galvanized						
steel							
readed rod	Material 1.4401 / 1.4404 / 1.4571, acc. to EN 1008 Property class 70, EN ISO 3506-1:2009	8-1:2005,					
xagon nut	Material 1.4401 / 1.4404 / 1.4571, acc. to EN 10088-1:2005, Property class 70, EN ISO 3506-2:2009						
sher, acc. to EN ISO 887:2006, ISO 7089:2000, EN ISO 93:2000, or EN ISO 7094:2000	Material 1.4401 / 1.4404 / 1.4571, acc. to EN 1008	8-1:2005					
rosion resistance steel							
readed rod	Material 1.4529 / 1.4565, acc. to EN 10088-1:2005, Property class 70, EN ISO 3506-1:2009						
xagon nut	Material 1.4529 / 1.4565, acc. to EN 10088-1:2005, Property class 70, EN ISO 3506-2:2009						
sher, acc. to EN ISO 887:2006, ISO 7089:2000, EN ISO 93:2000, or EN ISO 7094:2000	Material 1.4529 / 1.4565, acc. to EN 10088-1:2005	i					
ing bars							
oar 1992-1-1:2004+AC:2010, ex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/ $f_{uk} = f_{tk} = k \cdot f_{yk}$	′NA:2013					
	eaded rod xagon nut sher, acc. to EN ISO 887:2006, ISO 7089:2000, EN ISO 3:2000, or EN ISO 7094:2000 osion resistance steel eaded rod xagon nut sher, acc. to EN ISO 887:2006, ISO 7089:2000, EN ISO 3:2000, or EN ISO 7094:2000 ng bars ar 1992-1-1:2004+AC:2010,	eaded rod Material 1.4401 / 1.4404 / 1.4571, acc. to EN 1008 Property class 70, EN ISO 3506-1:2009 kagon nut Material 1.4401 / 1.4404 / 1.4571, acc. to EN 1008 Property class 70, EN ISO 3506-2:2009 sher, acc. to EN ISO 887:2006, ISO 7089:2000, EN ISO 3:2000, or EN ISO 7094:2000 Material 1.4401 / 1.4404 / 1.4571, acc. to EN 1008 Material 1.4401 / 1.4404 / 1.4571, acc. to EN 1008 3:2000, or EN ISO 7094:2000 osion resistance steel Material 1.4529 / 1.4565, acc. to EN 10088-1:2005 Property class 70, EN ISO 3506-2:2009 eaded rod Material 1.4529 / 1.4565, acc. to EN 10088-1:2005 Property class 70, EN ISO 3506-2:2009 kagon nut Material 1.4529 / 1.4565, acc. to EN 10088-1:2005 Property class 70, EN ISO 3506-2:2009 sher, acc. to EN ISO 887:2006, ISO 7089:2000, EN ISO 3:2000, or EN ISO 7094:2000 Material 1.4529 / 1.4565, acc. to EN 10088-1:2005 Property class 70, EN ISO 3506-2:2009 sher, acc. to EN ISO 887:2006, ISO 7089:2000, EN ISO 3:2000, or EN ISO 7094:2000 Material 1.4529 / 1.4565, acc. to EN 10088-1:2005 Property class 70, EN ISO 3506-2:2009 shers and de-coiled rods class B or C fyk and k according to NDP or NCL of EN 1992-1-1/					

Specifications of intended use

Anchorages subject to:

Static and quasi static loads: M10 to M24, rebar Ø10 to Ø25

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000
- · Uncracked concrete: M10 to M24, rebar Ø10 to Ø25

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently
 damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist
- (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete: M10 to M24, Rebar Ø10 to Ø25.
- Flooded holes (not sea water): M10 to M24, Rebar Ø10 to Ø25.
- · Hole drilling by diamond drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System VME for concrete

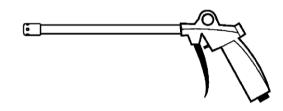
Intended use Specifications

Table B1: Installation parameters for threaded rod							
Anchor size			M10	M12	M16	M20	M24
Nominal drill hole diameter	d _o =	[mm]	12	14	18	24	28
Embodmont donth and have hale donth	h _{ef,min} =	[mm]	60	70	80	90	96
Embedment depth and bore hole depth	h _{ef,max} =	[mm]	200	240	320	400	480
Diameter of clearance hole in the fixture	d _f ≤	[mm]	12	2 14 18 22 2			26
Diameter of steel brush	d _b ≥	[mm]	14	16	20	26	30
Installation torque	T _{inst}	[Nm]	20	40	80	120	160
Thickness of fixture	t _{fix,min} ≻	[mm]	0				
	t _{fix,max} <	[mm]	1500				
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀		
Minimum spacing	S _{min}	[mm]	50	60	80	100	120
Minimum edge distance	C _{min}	[mm]	50	60	80	100	120

Table B2: Installation parameters for rebar

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Nominal drill hole diameter	d ₀ =	[mm]	14	16	18	20	24	32
Embedment depth and	$h_{ef,min} =$	[mm]	60	70	75	80	90	100
bore hole depth	h _{ef,max} =	[mm]	200	240	280	320	400	500
Diameter of steel brush	d₀≥	[mm]	16	18	20	22	26	34
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30mm ≥ 100 mm	h _{ef} + 2d ₀				
Minimum spacing	S _{min}	[mm]	50	60	70	80	100	125
Minimum edge distance	C _{min}	[mm]	50	60	70	80	100	125

Injection System VME for concrete


Intended use Installation parameters

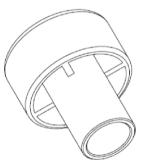

Steel brush

Table B3: Parameter cleaning and setting tools

Threaded rod	Rebar	d₀ Drill bit - Ø	d₅ Brush - Ø	d _{b,min} min. Brush - Ø	Retaining washer
[mm]	[mm]	[mm]	[mm]	[mm]	[-]
M10		12	14	12,5	
M12	10	14	16	14,5	
	12	16	18	16,5	No retaining washer required
M16	14	18	20	18,5	Wallion required
	16	20	22	20,5	
M20	20	24	26	24,5	VM-IA 24
M24		28	30	28,5	VM-IA 28
	25	32	34	32,5	VM-IA 32

Rec. compressed air tool (min 6 bar) All drill bit diameters (d₀)

Retaining washer for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 32 mm

Injection System VME for concrete

Intended use Cleaning and setting tools

Insta	allation instruc	tions	
1		Drill with diamond drill a hole into the base material to the size and required by the selected anchor (Table B1 or Table B2).	embedment depth
2a		Rinsing with water until clear water comes out.	
2b		Check brush diameter acc. Table B3 and attach the brush to a dri battery screwdriver. Brush the hole with an appropriate sized wire br B3) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension	rush > d _{b,min} (Table
2c		Rinsing again with water until clear water comes out.	
	min.6 bar	Attention! Standing water in the bore hole must be removed before	e cleaning.
2d		Starting from the bottom or back of the bore hole, blow the hole clear air (min. 6 bar) acc. to Annex B3, a minimum of two times. If the bore hole ground is not reached an extension shall be used.	n with compressed
2e		Check brush diameter acc. Table B3 and attach the brush to a dril battery screwdriver. Brush the hole with an appropriate sized wir minimum of two times. If the bore hole ground is not reached with the brush, a brush extension	e brush >d _{b,min} a
2f	min. 6 bar 2. cmp	Finally blow the hole clean again with compressed air acc. to Annex minimum of two times. If the bore hole ground is not reached an extension shall be used.	83 (min. 6 bar) a
disp	pensing the adhe	ore hole hast to be protected against re-contamination in an appr sive in the bore hole. If necessary, the cleaning has to be repeate sive. In-flowing water must not contaminate the bore hole again.	
3	AND DESCRIPTION OF THE PARTY OF	Attach a supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. For every working interruption longer than the recommended working well as for new cartridges, a new static-mixer shall be used.	-
4		Prior to inserting the anchor rod into the filled bore hole, the position depth shall be marked on the anchor rods.	of the embedment
5	min.3x	Prior to dispensing into the anchor hole, squeeze out separately a min strokes and discard non-uniformly mixed adhesive components until the a consistent colour.	
Inie	ection System	VME for concrete	
Inte	nded use allation instruction		Annex B4

Inst	allation instruc	ctions (continuation)
6		Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a retaining washer and extension nozzle (Annex B3) shall be used. Observe the working times given in Table B4.
7		Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure positve distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.
8		Be sure that the anchor is fully seated at the bottom of the hole and that excess adhesive is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation fix embedded part (e.g. wedges).
9	X	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).
10		After full curing, the add-on part can be installed with the maximum torque (Table B1) by using a calibrated torque wrench.

Table B4: Working and curing time

Bore hole	Maximum	Minimum curing time				
temperature	working time	dry concrete	wet concrete			
≥ + 5 °C	120 min	50 h	100 h			
≥ + 10 °C	90 min	30 h	60 h			
≥ +20 °C	30 min	10 h	20 h			
≥ + 30 °C	20 min	6 h	12 h			
≥ + 40 °C	12 min	4 h	8 h			

Injection System VME for concrete

Intended use

Installation instruction (continuation) Working and curing time

Anchor size threaded	rod			M 10	M 12	M 16	M 20	M24
Steel failure	104				101 12		111 20	1112-4
Characteristic tension res	istance,	Ν	51-513		24	60		444
Steel, property class 4.6	N _{Rk,s}	[kN]	23	34	63	98	141	
Characteristic tension resistance, Steel, property class 5.8		N _{Rk,s}	[kN]	29	42	78	122	176
Characteristic tension res Steel, property class 8.8	istance,	N _{Rk,s}	[kN]	46	67	125	196	282
Characteristic tension resistance, Stainless steel A4 and HCR, property class 70		N _{Rk,s}	[kN]	41	59	110	171	247
Combined pull-out an	d concrete cone failu	ure						
Characteristic bond resist	ance in non-cracked con	crete C20/	25					
Temperature range I:		τ _{Rk,ucr}	[N/mm²]	11	10	10	9,5	9,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,0	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,0	6,0	5,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,0	5,0	5,0
		C30/37	[-]			1,04		
Increasing factor for conc	rete ψ _c	C40/50	[-]			1,08		
		C50/60	[-]			1,10		
Factor according to CEN/TS 1992-4-5 Sectior	n 6.2.2.3	k ₈	[-]			10,1		
Concrete cone failure								
Factor according to CEN/TS 1992-4-5 Section	n 6.2.3.1	k_{ucr}	[-]			10,1		
Edge distance		C _{cr,N}	[mm]			1,5 h _{ef}		
Spacing		S _{cr,N}	[mm]			3,0 h _{ef}		
Splitting failure								
Edge distance		C cr,sp	[mm]	1,0	·h _{ef} ≤2·ł	$n_{ef}\left(2,5-\frac{1}{r}\right)$	$\left(\frac{h}{h_{ef}}\right) \leq 2,4 \cdot$	h _{ef}
Spacing		S _{cr,sp}	[mm]			2 c _{cr,sp}		
Installation safety factor		Y2 = Yinst	[-]	1,0			,2	

Injection System VME for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in uncracked concrete

Table C2:Characteristic va concrete	lues for	threa	ded rods	under she	ear loads	in uncrack	ed
Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Steel failure without lever arm				·		·	
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s}$	[kN]	12	17	31	49	71
Characteristic shear resistance, V Steel, property class 5.8		[kN]	15	21	39	61	88
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s}$	[kN]	23	34	63	98	141
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	V _{Rk,s}	[kN]	20	30	55	86	124
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	[-]] 0,8				
Steel failure with lever arm							
Characteristic bending moment, Steel, property class 4.6	M ⁰ Rk,s	[Nm]	30	52	133	260	449
Characteristic bending moment, Steel, property class 5.8	M ⁰ Rk,s	[Nm]	37	65	166	324	560
Characteristic bending moment, Steel, property class 8.8	M ⁰ Rk,s	[Nm]	60	105	266	519	896
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784
Concrete pry-out failure							
Factor k acc. to TR029 und k_3 acc. to CEN/TS 1992-4-5 Section 6.3.3	k (3)	[-]	2,0				
Concrete edge failure							
Effective length of anchor	lf	[mm]		I _f =	= min(h _{ef} ; 8 d _r	nom)	
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24
Installation safety factor[-]	^γ 2 = γ inst	[-]			1,0		

Injection System VME for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in uncracked concrete

Steel failure	•			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Ohana atagiatia tangian									-
Characteristic tension resistance N _{Rk,s}			[kN]			A _s ·	• f _{uk}		
Combined pull-out an	d concrete con	e failure							
Characteristic bond resist	ance in non-cracke	ed concret	te C20/25						
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,0	10	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0
	-	C30/37	[-]	1,04					
Increasing factor for conc		C40/50	[-]			,	08		
		C50/60	[-]	1,10					
Factor according to CEN/TS 1992-4-5 Sectior	n 6.2.2.3	k ₈	[-]			10),1		
Concrete cone failure)								
Factor according to CEN/TS 1992-4-5 Sectior	n 6.2.3.1	k _{ucr}	[-]	10,1					
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}		
Spacing		S _{cr,N}	[mm]			3,0	h _{ef}		
Splitting failure									
Edge distance		C _{cr,sp}	[mm]		1,0 · h _{ef}	$\leq 2 \cdot h_{ef} \left(2, \right)$	$\left(5 - \frac{h}{h_{ef}}\right) \le$	≤ 2,4 · h _{ef}	
Spacing		S _{cr,sp}	[mm]			2 c			
Installation safety factor		^γ 2 = Y inst	[-]	1,0			1,2		

Characteristic values of resistance for rebar under tension loads in uncracked concrete

Table C4: Characteristic values f	or reb	oar under	r shear lo	bads in u	ncracked	d concret	e
Anchor size reinforcing bar		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure without lever arm							
Characteristic shear resistance V _{Rk,s}	[kN]			0,50 ·	A _s ∙ f _{uk}		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	[-]			0	,8		
Steel failure with lever arm							
Characteristic bending moment M ⁰ _{Rk,s}	[Nm]			1,2 · V	V _{el} ∙ f _{uk}		
Concrete pry-out failure							
Factor k acc. to TR029 und $$k_{\rm 3}$$ acc. to CEN/TS 1992-4-5 Section 6.3.3 $$k_{\rm (3)}$$	[-]			2	,0		
Concrete edge failure							
Effective length of anchor I _f	[mm]			l _f = min(h	_{ef} ; 8 d _{nom})		
Outside diameter of anchor d _{nom}	[mm]	10	12	14	16	20	25
Installation safety factor $v_2 = \gamma_{inst}$	[-]						
Injection System VME for concrete)					-	
Performances Characteristic values of resistance for rebar unde	er shear	loads in un	cracked con	crete		Anno	ex C4

Anchor size threa	ded rod		M 10	M 12	M 16	M 20	M24
Temperature range	40°C/24°C for non	-cracked concrete	e C20/25				
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,020	0,024	0,029
Displacement	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114
Temperature range	72°C/43°C and 60°						
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033
Displacement	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131

Displacement under shear load ¹⁾ (threaded rod) Table C6:

Anchor size threaded rod			M10	M12	M16	M20	M24
Displacement	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
Displacement	δ_{V_∞} -factor	[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Injection System VME for concrete

Performances Displacements (threaded rods)

Anchor size rein	forcing bar		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25		
Temperature range 40°C/24°C for non-cracked concrete C20/25										
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,024	0,030		
Displacement	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,061	0,070	0,079	0,096	0,118		
Temperature ran	ge 72°C/43°C an	d 60°C/43°C for	^r non-crack	ed concrete	C20/25	-				
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,015	0,018	0,020	0,023	0,028	0,034		

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond strength

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Displacement under shear load ¹⁾ (rebar) Table C8:

Anchor size reinforcing bar		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Displacement	δ_{V0} -factor	[mm/(kN)]	0,05	0,05	0,04	0,04	0,04	0,03
Displacement	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,08	0,07	0,06	0,06	0,05	0,05

¹⁾ Calculation of the displacement

V: action shear load $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$;

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor $\cdot V$;

Injection System VME for concrete

Performances Displacements (rebar)