

BAUINGENIEURWESEN Arbeitsgruppe Experimenteller Baulicher Brandschutz

Dr.-Ing. Catherina Thiele

Project Number:	1534/18_en
Purpose:	Assessment of resistance under fire exposure of the MKT Injection System VME in fire tests
Client:	Metall- Kunststoff-Technik GmbH & Co.KG Auf dem Immel 2 67685 Weilerbach
Contact:	www.uni-kl.de/ebb/ Catherina Thiele Tel: +49 631 205 3833
Date:	30.10.2018

C. thicle

Dr.-Ing. Catherina Thiele

Table of contents

1.	General	3
2.	References	3
3.	Product Description	3
4.	Evaluation Scope	3
5.	Fire Resistances	4

1. General

The Technische Universität Kaiserslautern had been authorized by Metall- Kunststoff-Technik GmbH & Co.KG to evaluate the fire resistance of the MKT Injection System VME. This report is based on the test reports of MPA Braunschweig [3]. The fire tests and their evaluation were executed according to DIN EN 1363-1:2012 [2] and [1].

The fire resistances (listed in Table. 1) are based on the results of a fire exposure on a one side uncracked concrete slab. The evaluation in this report is based on TR 020 [1].

2. References

- [1] Evaluation of Anchorages in Concrete Concerning Resistance to fire, EOTA TR 020, Edition May 2004
- [2] Feuerwiderstandsprüfungen Teil 1: Allgemeine Anforderungen, DIN EN 1363-1; Edition Oktober 2012
- [3] Test Report (3290/0966)-NB dd. 06/03/2008 ; iBMB Braunschweig; deposited at the TU Kaiserslautern
- [4] ETA-09/0350 from 12 December 2017, MKT Injection System VME for concrete

3. Product Description

The Product is described in [4].

4. Evaluation Scope

The fire resistance evaluation of MKT Injection System VME is based on the executed fire tests. The anchors were installed upside down to simulate the real situation of a ceiling and put under the uniform temperature curve fire test (UTC) according to [2]. In all tests, a fixture was used based on TR020 [1], therefore the following fire resistance evaluation applies only for anchors which are protected (in a comparable manner to the used fixture in the fire test) against the temperature increase during a fire case.

The fire tests were executed on a uncracked concrete slab.

The evaluation was executed depending on TR020 [1].

Nut failures, rips in the anchor rod and pull-out failures occurred in the tests.

5. Fire Resistances

The following tables show the decisive fire resistances $N_{Rk,fi}$ of a fire exposure on a one side uncracked concrete with tensile loading (minimum strength class C20/25). The given fire resistances $N_{Rk,fi}$ apply for a single anchor under tensile load with an edge distance greater than $c_{cr}=2 h_{ef}$ and a spacing of at least $s = 2 c_{cr} = 4 h_{ef}$ between the neighbouring anchor. By keeping the mentioned edge distances and spacing, a concrete cone failure is not relevant. The given values apply for anchor rods with a strength class of at least 5.8 (EN 1993-1-8:2005+AC:2009). The same fire resistances can be assumed for threaded rods of stainless steel and high corrosion resistant steel with a strength class of 70 (EN ISO 3506-1:2009).

If the edge distance c is chosen in a way, that steel failure / pull-out is determined in the fire design, the following load values can be also applied on anchors under shear load.

Fire resistance N _{Rk,fi}	Anchors Sizes	M8	M10	M12	M16	M20	M24	M27	M30
in [kN]	Minimum embedment depth h _{ef,min} [mm]	≥ 80	≥ 90	≥ 110	≥ 125	≥ 170	≥ 210	≥ 2 50	≥ 280
Fire resistance duration	30	0,5	1,5	3,2	8,0	15,6	22,5	29,2	35,7
t _u [min]	60	0,4	1,1	2,3	5,9	11,7	16,9	21,9	26 <i>,</i> 8
	90	0,2	0,6	1,4	3,8	7,8	11,3	14,7	17,9
	120	0,1	0,4	0,9	2,7	5,9	8,5	11,0	13 <i>,</i> 5

Table 1: Fire resistance NRk,fi of MKT Injection System VME in uncracked concrete slab